Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 6 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor Node User Manual 1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. ting1 +XWiki.Xiaoling - Content
-
... ... @@ -1,10 +1,15 @@ 1 + 2 + 1 1 (% style="text-align:center" %) 2 -[[image:image-202 30515135611-1.jpeg||height="589" width="589"]]4 +[[image:image-20240103095714-2.png]] 3 3 4 4 5 5 6 -**Table of Contents:** 7 7 9 + 10 + 11 +**Table of Contents:** 12 + 8 8 {{toc/}} 9 9 10 10 ... ... @@ -14,18 +14,18 @@ 14 14 15 15 = 1. Introduction = 16 16 17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node == 22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node == 18 18 19 19 20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 23 23 24 -(% style="color:blue" %)** SN50V3-LB **(%%)has a powerful48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors. 25 25 26 -(% style="color:blue" %)** SN50V3-LB**(%%) has abuilt-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining. 27 27 28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 30 == 1.2 Features == 31 31 ... ... @@ -88,7 +88,7 @@ 88 88 == 1.5 Button & LEDs == 89 89 90 90 91 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 96 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]] 92 92 93 93 94 94 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) ... ... @@ -127,14 +127,19 @@ 127 127 128 128 == 1.8 Mechanical == 129 129 135 +=== 1.8.1 for LB version === 130 130 131 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 132 132 133 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 138 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 134 134 140 + 135 135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 136 136 143 +=== 1.8.2 for LS version === 137 137 145 +[[image:image-20231231203439-3.png||height="385" width="886"]] 146 + 147 + 138 138 == 1.9 Hole Option == 139 139 140 140 ... ... @@ -592,8 +592,8 @@ 592 592 593 593 [[image:image-20230817172209-2.png||height="439" width="683"]] 594 594 595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width: 690px" %)596 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width: 89px" %)**2**605 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 606 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 597 597 |Value|Bat|(% style="width:191px" %)((( 598 598 Temperature(DS18B20)(PC13) 599 599 )))|(% style="width:78px" %)((( ... ... @@ -600,7 +600,6 @@ 600 600 ADC(PA4) 601 601 )))|(% style="width:135px" %)((( 602 602 PWM_Setting 603 - 604 604 &Digital Interrupt(PA8) 605 605 )))|(% style="width:70px" %)((( 606 606 Pulse period ... ... @@ -629,14 +629,34 @@ 629 629 630 630 [[image:image-20230818092200-1.png||height="344" width="627"]] 631 631 632 -===== 2.3.2.10.b Uplink, PWM inputcapture=====641 +===== 2.3.2.10.b Uplink, PWM output ===== 633 633 643 +[[image:image-20230817172209-2.png||height="439" width="683"]] 634 634 645 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 635 635 647 +a is the time delay of the output, the unit is ms. 636 636 649 +b is the output frequency, the unit is HZ. 637 637 651 +c is the duty cycle of the output, the unit is %. 638 638 653 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 639 639 655 +aa is the time delay of the output, the unit is ms. 656 + 657 +bb is the output frequency, the unit is HZ. 658 + 659 +cc is the duty cycle of the output, the unit is %. 660 + 661 + 662 +For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 663 + 664 +The oscilloscope displays as follows: 665 + 666 +[[image:image-20231213102404-1.jpeg||height="780" width="932"]] 667 + 668 + 640 640 ===== 2.3.2.10.c Downlink, PWM output ===== 641 641 642 642 ... ... @@ -1160,25 +1160,26 @@ 1160 1160 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1161 1161 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1162 1162 1192 +(% id="H3.3.8PWMsetting" %) 1163 1163 === 3.3.8 PWM setting === 1164 1164 1165 1165 1166 - *Feature: Set the time acquisition unit for PWM input capture.1196 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture. 1167 1167 1168 1168 (% style="color:blue" %)**AT Command: AT+PWMSET** 1169 1169 1170 1170 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1171 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1172 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width: 196px" %)0|(% style="width:157px" %)(((1201 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1202 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1173 1173 0(default) 1174 1174 1175 1175 OK 1176 1176 ))) 1177 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width: 196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)(((1207 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1178 1178 OK 1179 1179 1180 1180 ))) 1181 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width: 196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK1211 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1182 1182 1183 1183 (% style="color:blue" %)**Downlink Command: 0x0C** 1184 1184 ... ... @@ -1187,46 +1187,73 @@ 1187 1187 * Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1188 1188 * Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1189 1189 1190 - *Feature: Set thetimeacquisitionunit forPWM inputcapture.1220 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle. 1191 1191 1192 1192 (% style="color:blue" %)**AT Command: AT+PWMOUT** 1193 1193 1194 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:5 80px" %)1195 -|=(% style="width: 1 55px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1196 -|(% style="width:1 54px" %)AT+PWMOUT=?|(% style="width:196px" %)0|(% style="width:157px" %)(((1224 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1225 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1226 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1197 1197 0,0,0(default) 1198 1198 1199 1199 OK 1200 1200 ))) 1201 -|(% style="width:1 54px" %)AT+PWMOUT=0,0,0|(% style="width:196px" %)The default is PWM input detection|(% style="width:157px" %)(((1231 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1202 1202 OK 1203 1203 1204 1204 ))) 1205 -|(% style="width:1 54px" %)AT+PWMOUT=a,b,c|(% style="width:250px" %)(((1206 -PWM output. 1235 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1236 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1207 1207 1208 -a: Output time (unit: seconds) 1238 + 1239 +)))|(% style="width:137px" %)((( 1240 +OK 1241 +))) 1209 1209 1210 -b: Output frequency (unit: HZ) 1243 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1244 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters** 1245 +|(% colspan="1" rowspan="3" style="width:155px" %)((( 1246 +AT+PWMOUT=a,b,c 1211 1211 1212 -c: Output duty cycle (unit: %) 1213 -)))|(% style="width:157px" %)((( 1214 -OK 1248 + 1249 +)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1250 +Set PWM output time, output frequency and output duty cycle. 1251 + 1252 +((( 1253 + 1215 1215 ))) 1216 1216 1256 +((( 1257 + 1258 +))) 1259 +)))|(% style="width:242px" %)((( 1260 +a: Output time (unit: seconds) 1217 1217 1218 - (%style="color:blue"%)**DownlinkCommand:0x0C**1262 +The value ranges from 0 to 65535. 1219 1219 1264 +When a=65535, PWM will always output. 1265 +))) 1266 +|(% style="width:242px" %)((( 1267 +b: Output frequency (unit: HZ) 1268 +))) 1269 +|(% style="width:242px" %)((( 1270 +c: Output duty cycle (unit: %) 1220 1220 1221 -Format: Command Code (0x0C) followed by 1 bytes. 1272 +The value ranges from 0 to 100. 1273 +))) 1222 1222 1223 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1224 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1275 +(% style="color:blue" %)**Downlink Command: 0x0B01** 1225 1225 1277 +Format: Command Code (0x0B01) followed by 6 bytes. 1226 1226 1227 - =4. Battery&PowerConsumption=1279 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1228 1228 1281 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1282 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1229 1229 1284 += 4. Battery & Power Cons = 1285 + 1286 + 1230 1230 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1231 1231 1232 1232 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +35.4 KB - Content
- image-20231231203439-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.6 KB - Content
- image-20240103095513-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +577.4 KB - Content
- image-20240103095714-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +230.1 KB - Content