<
From version < 76.1 >
edited by Mengting Qiu
on 2023/12/12 19:04
To version < 8.1 >
edited by Edwin Chen
on 2023/05/11 20:37
>
Change comment: Uploaded new attachment "image-20230511203450-2.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Edwin
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
3 3  
4 4  
5 5  
... ... @@ -16,20 +16,23 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
21 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
22 +
23 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
29 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
32 +
30 30  == 1.2 ​Features ==
31 31  
32 -
33 33  * LoRaWAN 1.0.3 Class A
34 34  * Ultra-low power consumption
35 35  * Open-Source hardware/software
... ... @@ -42,7 +42,6 @@
42 42  
43 43  == 1.3 Specification ==
44 44  
45 -
46 46  (% style="color:#037691" %)**Common DC Characteristics:**
47 47  
48 48  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -79,7 +79,6 @@
79 79  
80 80  == 1.4 Sleep mode and working mode ==
81 81  
82 -
83 83  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84 84  
85 85  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -122,7 +122,6 @@
122 122  == 1.7 Pin Definitions ==
123 123  
124 124  
125 -[[image:image-20230610163213-1.png||height="404" width="699"]]
126 126  
127 127  
128 128  == 1.8 Mechanical ==
... ... @@ -135,9 +135,8 @@
135 135  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136 136  
137 137  
138 -== 1.9 Hole Option ==
137 +== Hole Option ==
139 139  
140 -
141 141  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142 142  
143 143  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -145,12 +145,12 @@
145 145  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
146 146  
147 147  
148 -= 2. Configure SN50v3-LB to connect to LoRaWAN network =
146 += 2. Configure S31x-LB to connect to LoRaWAN network =
149 149  
150 150  == 2.1 How it works ==
151 151  
152 152  
153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
151 +The S31x-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154 154  
155 155  
156 156  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -158,14 +158,14 @@
158 158  
159 159  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160 160  
161 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
159 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 162  
163 163  
164 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
162 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from S31x-LB.
165 165  
166 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
164 +Each S31x-LB is shipped with a sticker with the default device EUI as below:
167 167  
168 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
166 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
169 169  
170 170  
171 171  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
... ... @@ -192,10 +192,10 @@
192 192  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
193 193  
194 194  
195 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
193 +(% style="color:blue" %)**Step 2:**(%%) Activate on S31x-LB
196 196  
197 197  
198 -Press the button for 5 seconds to activate the SN50v3-LB.
196 +Press the button for 5 seconds to activate the S31x-LB.
199 199  
200 200  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
201 201  
... ... @@ -207,7 +207,7 @@
207 207  === 2.3.1 Device Status, FPORT~=5 ===
208 208  
209 209  
210 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
208 +Users can use the downlink command(**0x26 01**) to ask S31x-LB to send device configure detail, include device configure status. S31x-LB will uplink a payload via FPort=5 to server.
211 211  
212 212  The Payload format is as below.
213 213  
... ... @@ -215,44 +215,46 @@
215 215  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 216  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 217  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
216 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219 219  
220 220  Example parse in TTNv3
221 221  
220 +[[image:image-20230421171614-1.png||alt="图片-20230421171614-1.png"]]
222 222  
223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
224 224  
223 +(% style="color:#037691" %)**Sensor Model**(%%): For S31x-LB, this value is 0x0A
224 +
225 225  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226 226  
227 227  (% style="color:#037691" %)**Frequency Band**:
228 228  
229 -0x01: EU868
229 +*0x01: EU868
230 230  
231 -0x02: US915
231 +*0x02: US915
232 232  
233 -0x03: IN865
233 +*0x03: IN865
234 234  
235 -0x04: AU915
235 +*0x04: AU915
236 236  
237 -0x05: KZ865
237 +*0x05: KZ865
238 238  
239 -0x06: RU864
239 +*0x06: RU864
240 240  
241 -0x07: AS923
241 +*0x07: AS923
242 242  
243 -0x08: AS923-1
243 +*0x08: AS923-1
244 244  
245 -0x09: AS923-2
245 +*0x09: AS923-2
246 246  
247 -0x0a: AS923-3
247 +*0x0a: AS923-3
248 248  
249 -0x0b: CN470
249 +*0x0b: CN470
250 250  
251 -0x0c: EU433
251 +*0x0c: EU433
252 252  
253 -0x0d: KR920
253 +*0x0d: KR920
254 254  
255 -0x0e: MA869
255 +*0x0e: MA869
256 256  
257 257  
258 258  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -273,427 +273,41 @@
273 273  Ex2: 0x0B49 = 2889mV
274 274  
275 275  
276 -=== 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
276 +=== 2.3.2  Sensor Data. FPORT~=2 ===
277 277  
278 278  
279 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
279 +Sensor Data is uplink via FPORT=2
280 280  
281 -For example:
282 -
283 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 -
285 -
286 -(% style="color:red" %) **Important Notice:**
287 -
288 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
289 -
290 -2. All modes share the same Payload Explanation from HERE.
291 -
292 -3. By default, the device will send an uplink message every 20 minutes.
293 -
294 -
295 -==== 2.3.2.1  MOD~=1 (Default Mode) ====
296 -
297 -
298 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
299 -
300 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
301 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
302 -|Value|Bat|(% style="width:191px" %)(((
303 -Temperature(DS18B20)(PC13)
304 -)))|(% style="width:78px" %)(((
305 -ADC(PA4)
306 -)))|(% style="width:216px" %)(((
307 -Digital in(PB15)&Digital Interrupt(PA8)
308 -)))|(% style="width:308px" %)(((
309 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
310 -)))|(% style="width:154px" %)(((
311 -Humidity(SHT20 or SHT31)
312 -)))
313 -
314 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
315 -
316 -
317 -==== 2.3.2.2  MOD~=2 (Distance Mode) ====
318 -
319 -
320 -This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
321 -
322 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
323 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
324 -|Value|BAT|(% style="width:196px" %)(((
325 -Temperature(DS18B20)(PC13)
326 -)))|(% style="width:87px" %)(((
327 -ADC(PA4)
328 -)))|(% style="width:189px" %)(((
329 -Digital in(PB15) & Digital Interrupt(PA8)
330 -)))|(% style="width:208px" %)(((
331 -Distance measure by: 1) LIDAR-Lite V3HP
332 -Or 2) Ultrasonic Sensor
333 -)))|(% style="width:117px" %)Reserved
334 -
335 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
336 -
337 -
338 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
339 -
340 -[[image:image-20230512173758-5.png||height="563" width="712"]]
341 -
342 -
343 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
344 -
345 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
346 -
347 -[[image:image-20230512173903-6.png||height="596" width="715"]]
348 -
349 -
350 -For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
351 -
352 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
353 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
354 -|Value|BAT|(% style="width:183px" %)(((
355 -Temperature(DS18B20)(PC13)
356 -)))|(% style="width:173px" %)(((
357 -Digital in(PB15) & Digital Interrupt(PA8)
358 -)))|(% style="width:84px" %)(((
359 -ADC(PA4)
360 -)))|(% style="width:323px" %)(((
361 -Distance measure by:1)TF-Mini plus LiDAR
362 -Or 2) TF-Luna LiDAR
363 -)))|(% style="width:188px" %)Distance signal  strength
364 -
365 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
366 -
367 -
368 -**Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
369 -
370 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
371 -
372 -[[image:image-20230512180609-7.png||height="555" width="802"]]
373 -
374 -
375 -**Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
376 -
377 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
378 -
379 -[[image:image-20230610170047-1.png||height="452" width="799"]]
380 -
381 -
382 -==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
383 -
384 -
385 -This mode has total 12 bytes. Include 3 x ADC + 1x I2C
386 -
387 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
388 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
281 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
282 +|=(% style="width: 90px;background-color:#D9E2F3" %)(((
389 389  **Size(bytes)**
390 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
391 -|Value|(% style="width:68px" %)(((
392 -ADC1(PA4)
393 -)))|(% style="width:75px" %)(((
394 -ADC2(PA5)
395 -)))|(((
396 -ADC3(PA8)
397 -)))|(((
398 -Digital Interrupt(PB15)
399 -)))|(% style="width:304px" %)(((
400 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
401 -)))|(% style="width:163px" %)(((
402 -Humidity(SHT20 or SHT31)
403 -)))|(% style="width:53px" %)Bat
404 -
405 -[[image:image-20230513110214-6.png]]
406 -
407 -
408 -==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
409 -
410 -
411 -This mode has total 11 bytes. As shown below:
412 -
413 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
414 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
415 -|Value|BAT|(% style="width:186px" %)(((
416 -Temperature1(DS18B20)(PC13)
417 -)))|(% style="width:82px" %)(((
418 -ADC(PA4)
419 -)))|(% style="width:210px" %)(((
420 -Digital in(PB15) & Digital Interrupt(PA8) 
421 -)))|(% style="width:191px" %)Temperature2(DS18B20)
422 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
423 -
424 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
425 -
426 -
427 -[[image:image-20230513134006-1.png||height="559" width="736"]]
428 -
429 -
430 -==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
431 -
432 -
433 -[[image:image-20230512164658-2.png||height="532" width="729"]]
434 -
435 -Each HX711 need to be calibrated before used. User need to do below two steps:
436 -
437 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
438 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
439 -1. (((
440 -Weight has 4 bytes, the unit is g.
441 -
442 -
443 -
284 +)))|=(% style="width: 80px;background-color:#D9E2F3" %)2|=(% style="width: 90px;background-color:#D9E2F3" %)4|=(% style="width:80px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)2
285 +|(% style="width:99px" %)**Value**|(% style="width:69px" %)(((
286 +[[Battery>>||anchor="HBattery:"]]
287 +)))|(% style="width:130px" %)(((
288 +[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]]
289 +)))|(% style="width:91px" %)(((
290 +[[Alarm Flag>>||anchor="HAlarmFlag26MOD:"]]
291 +)))|(% style="width:103px" %)(((
292 +[[Temperature>>||anchor="HTemperature:"]]
293 +)))|(% style="width:80px" %)(((
294 +[[Humidity>>||anchor="HHumidity:"]]
444 444  )))
445 445  
446 -For example:
297 +==== (% style="color:#4472c4" %)**Battery**(%%) ====
447 447  
448 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
299 +Sensor Battery Level.
449 449  
450 -Response:  Weight is 401 g
451 -
452 -Check the response of this command and adjust the value to match the real value for thing.
453 -
454 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
455 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
456 -**Size(bytes)**
457 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
458 -|Value|BAT|(% style="width:193px" %)(((
459 -Temperature(DS18B20)(PC13)
460 -)))|(% style="width:85px" %)(((
461 -ADC(PA4)
462 -)))|(% style="width:186px" %)(((
463 -Digital in(PB15) & Digital Interrupt(PA8)
464 -)))|(% style="width:100px" %)Weight
465 -
466 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
467 -
468 -
469 -==== 2.3.2.6  MOD~=6 (Counting Mode) ====
470 -
471 -
472 -In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
473 -
474 -Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
475 -
476 -[[image:image-20230512181814-9.png||height="543" width="697"]]
477 -
478 -
479 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
480 -
481 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
482 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
483 -|Value|BAT|(% style="width:256px" %)(((
484 -Temperature(DS18B20)(PC13)
485 -)))|(% style="width:108px" %)(((
486 -ADC(PA4)
487 -)))|(% style="width:126px" %)(((
488 -Digital in(PB15)
489 -)))|(% style="width:145px" %)(((
490 -Count(PA8)
491 -)))
492 -
493 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
494 -
495 -
496 -==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
497 -
498 -
499 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
500 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
501 -**Size(bytes)**
502 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
503 -|Value|BAT|(% style="width:188px" %)(((
504 -Temperature(DS18B20)
505 -(PC13)
506 -)))|(% style="width:83px" %)(((
507 -ADC(PA5)
508 -)))|(% style="width:184px" %)(((
509 -Digital Interrupt1(PA8)
510 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
511 -
512 -[[image:image-20230513111203-7.png||height="324" width="975"]]
513 -
514 -
515 -==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
516 -
517 -
518 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
519 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
520 -**Size(bytes)**
521 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
522 -|Value|BAT|(% style="width:207px" %)(((
523 -Temperature(DS18B20)
524 -(PC13)
525 -)))|(% style="width:94px" %)(((
526 -ADC1(PA4)
527 -)))|(% style="width:198px" %)(((
528 -Digital Interrupt(PB15)
529 -)))|(% style="width:84px" %)(((
530 -ADC2(PA5)
531 -)))|(% style="width:82px" %)(((
532 -ADC3(PA8)
533 -)))
534 -
535 -[[image:image-20230513111231-8.png||height="335" width="900"]]
536 -
537 -
538 -==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
539 -
540 -
541 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
542 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
543 -**Size(bytes)**
544 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
545 -|Value|BAT|(((
546 -Temperature
547 -(DS18B20)(PC13)
548 -)))|(((
549 -Temperature2
550 -(DS18B20)(PB9)
551 -)))|(((
552 -Digital Interrupt
553 -(PB15)
554 -)))|(% style="width:193px" %)(((
555 -Temperature3
556 -(DS18B20)(PB8)
557 -)))|(% style="width:78px" %)(((
558 -Count1(PA8)
559 -)))|(% style="width:78px" %)(((
560 -Count2(PA4)
561 -)))
562 -
563 -[[image:image-20230513111255-9.png||height="341" width="899"]]
564 -
565 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
566 -
567 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
568 -
569 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
570 -
571 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
572 -
573 -
574 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
575 -
576 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
577 -
578 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
579 -
580 -
581 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
582 -
583 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
584 -
585 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
586 -
587 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
588 -
589 -
590 -===== 2.3.2.10.a  Uplink, PWM input capture =====
591 -
592 -
593 -[[image:image-20230817172209-2.png||height="439" width="683"]]
594 -
595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
596 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
597 -|Value|Bat|(% style="width:191px" %)(((
598 -Temperature(DS18B20)(PC13)
599 -)))|(% style="width:78px" %)(((
600 -ADC(PA4)
601 -)))|(% style="width:135px" %)(((
602 -PWM_Setting
603 -
604 -&Digital Interrupt(PA8)
605 -)))|(% style="width:70px" %)(((
606 -Pulse period
607 -)))|(% style="width:89px" %)(((
608 -Duration of high level
609 -)))
610 -
611 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
612 -
613 -
614 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
615 -
616 -**Frequency:**
617 -
618 -(% class="MsoNormal" %)
619 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
620 -
621 -(% class="MsoNormal" %)
622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
623 -
624 -
625 -(% class="MsoNormal" %)
626 -**Duty cycle:**
627 -
628 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
629 -
630 -[[image:image-20230818092200-1.png||height="344" width="627"]]
631 -
632 -===== 2.3.2.10.b  Uplink, PWM input capture =====
633 -
634 -
635 -
636 -
637 -
638 -
639 -
640 -===== 2.3.2.10.c  Downlink, PWM output =====
641 -
642 -
643 -[[image:image-20230817173800-3.png||height="412" width="685"]]
644 -
645 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
646 -
647 - xx xx xx is the output frequency, the unit is HZ.
648 -
649 - yy is the duty cycle of the output, the unit is %.
650 -
651 - zz zz is the time delay of the output, the unit is ms.
652 -
653 -
654 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
655 -
656 -The oscilloscope displays as follows:
657 -
658 -[[image:image-20230817173858-5.png||height="694" width="921"]]
659 -
660 -
661 -=== 2.3.3  ​Decode payload ===
662 -
663 -
664 -While using TTN V3 network, you can add the payload format to decode the payload.
665 -
666 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
667 -
668 -The payload decoder function for TTN V3 are here:
669 -
670 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
671 -
672 -
673 -==== 2.3.3.1 Battery Info ====
674 -
675 -
676 -Check the battery voltage for SN50v3-LB.
677 -
678 678  Ex1: 0x0B45 = 2885mV
679 679  
680 680  Ex2: 0x0B49 = 2889mV
681 681  
682 682  
683 -==== 2.3.3.2  Temperature (DS18B20) ====
684 684  
307 +==== (% style="color:#4472c4" %)**Temperature**(%%) ====
685 685  
686 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
309 +**Example**:
687 687  
688 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
689 -
690 -(% style="color:blue" %)**Connection:**
691 -
692 -[[image:image-20230512180718-8.png||height="538" width="647"]]
693 -
694 -
695 -(% style="color:blue" %)**Example**:
696 -
697 697  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
698 698  
699 699  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -701,261 +701,195 @@
701 701  (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
702 702  
703 703  
704 -==== 2.3.3.3 Digital Input ====
318 +==== (% style="color:#4472c4" %)**Humidity**(%%) ====
705 705  
706 706  
707 -The digital input for pin PB15,
321 +Read:0x(0197)=412    Value:  412 / 10=41.2, So 41.2%
708 708  
709 -* When PB15 is high, the bit 1 of payload byte 6 is 1.
710 -* When PB15 is low, the bit 1 of payload byte 6 is 0.
711 711  
712 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
713 -(((
714 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
324 +==== (% style="color:#4472c4" %)**Alarm Flag& MOD**(%%) ====
715 715  
716 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
717 717  
718 -
719 -)))
327 +**Example:**
720 720  
721 -==== 2.3.3.4  Analogue Digital Converter (ADC) ====
329 +If payload & 0x01 = 0x01  **~-~->** This is an Alarm Message
722 722  
331 +If payload & 0x01 = 0x00  **~-~->** This is a normal uplink message, no alarm
723 723  
724 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
333 +If payload >> 2 = 0x00  **~-~->**  means MOD=1, This is a sampling uplink message
725 725  
726 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
335 +If payload >> 2 = 0x31  **~-~->**  means MOD=31, this message is a reply message for polling, this message contains the alarm settingssee [[this link>>path:#HPolltheAlarmsettings:]] for detail. 
727 727  
728 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
729 729  
338 +== 2.4 Payload Decoder file ==
730 730  
731 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
732 732  
341 +In TTN, use can add a custom payload so it shows friendly reading
733 733  
734 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
343 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
735 735  
736 -[[image:image-20230811113449-1.png||height="370" width="608"]]
345 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
737 737  
738 -==== 2.3.3.5 Digital Interrupt ====
739 739  
348 +== 2.5 Datalog Feature ==
740 740  
741 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
742 742  
743 -(% style="color:blue" %)** Interrupt connection method:**
351 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes.
744 744  
745 -[[image:image-20230513105351-5.png||height="147" width="485"]]
746 746  
354 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
747 747  
748 -(% style="color:blue" %)**Example to use with door sensor :**
749 749  
750 -The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
357 +Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
751 751  
752 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
359 +* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server.
360 +* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages.
753 753  
754 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
362 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
755 755  
364 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
756 756  
757 -(% style="color:blue" %)**Below is the installation example:**
366 +=== 2.5.2 Unix TimeStamp ===
758 758  
759 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
760 760  
761 -* (((
762 -One pin to SN50v3-LB's PA8 pin
763 -)))
764 -* (((
765 -The other pin to SN50v3-LB's VDD pin
766 -)))
369 +S31x-LB uses Unix TimeStamp format based on
767 767  
768 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
371 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
769 769  
770 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
373 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
771 771  
772 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
375 +Below is the converter example
773 773  
774 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
377 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
775 775  
776 -The above photos shows the two parts of the magnetic switch fitted to a door.
379 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
777 777  
778 -The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
779 779  
780 -The command is:
382 +=== 2.5.3 Set Device Time ===
781 781  
782 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
783 783  
784 -Below shows some screen captures in TTN V3:
385 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
785 785  
786 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
387 +Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
787 787  
389 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
788 788  
789 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
790 790  
791 -door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
392 +=== 2.5.4 Datalog Uplink payload (FPORT~=3) ===
792 792  
793 793  
794 -==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
395 +The Datalog uplinks will use below payload format.
795 795  
397 +**Retrieval data payload:**
796 796  
797 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
399 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
400 +|=(% style="width: 80px;background-color:#D9E2F3" %)(((
401 +**Size(bytes)**
402 +)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4**
403 +|(% style="width:103px" %)**Value**|(% style="width:54px" %)(((
404 +[[Temp_Black>>||anchor="HTemperatureBlack:"]]
405 +)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]]
798 798  
799 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
407 +**Poll message flag & Ext:**
800 800  
801 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
409 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]]
802 802  
411 +**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
803 803  
804 -Below is the connection to SHT20/ SHT31. The connection is as below:
413 +**Poll Message Flag**: 1: This message is a poll message reply.
805 805  
806 -[[image:image-20230610170152-2.png||height="501" width="846"]]
415 +* Poll Message Flag is set to 1.
807 807  
417 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
808 808  
809 -The device will be able to get the I2C sensor data now and upload to IoT Server.
419 +For example, in US915 band, the max payload for different DR is:
810 810  
811 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
421 +**a) DR0:** max is 11 bytes so one entry of data
812 812  
813 -Convert the read byte to decimal and divide it by ten.
423 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
814 814  
815 -**Example:**
425 +**c) DR2:** total payload includes 11 entries of data
816 816  
817 -Temperature:  Read:0116(H) = 278(D Value 278 /10=27.8℃;
427 +**d) DR3: **total payload includes 22 entries of data.
818 818  
819 -Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
429 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
820 820  
821 -If you want to use other I2C device, please refer the SHT20 part source code as reference.
822 822  
823 -
824 -==== 2.3.3.7  ​Distance Reading ====
825 -
826 -
827 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
828 -
829 -
830 -==== 2.3.3.8 Ultrasonic Sensor ====
831 -
832 -
833 -This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
834 -
835 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
836 -
837 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
838 -
839 -The picture below shows the connection:
840 -
841 -[[image:image-20230512173903-6.png||height="596" width="715"]]
842 -
843 -
844 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
845 -
846 -The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
847 -
848 848  **Example:**
849 849  
850 -Distance:  Read: 0C2D(Hex) = 3117(D)  Value 3117 mm=311.7 cm
434 +If S31x-LB has below data inside Flash:
851 851  
436 +[[image:1682646494051-944.png]]
852 852  
853 -==== 2.3.3.9  Battery Output - BAT pin ====
438 +If user sends below downlink command: 3160065F9760066DA705
854 854  
440 +Where : Start time: 60065F97 = time 21/1/19 04:27:03
855 855  
856 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
442 + Stop time: 60066DA7= time 21/1/19 05:27:03
857 857  
858 858  
859 -==== 2.3.3.1 +5V Output ====
445 +**S31x-LB will uplink this payload.**
860 860  
447 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]]
861 861  
862 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
449 +(((
450 +__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
451 +)))
863 863  
864 -The 5V output time can be controlled by AT Command.
453 +(((
454 +Where the first 11 bytes is for the first entry:
455 +)))
865 865  
866 -(% style="color:blue" %)**AT+5VT=1000**
457 +(((
458 +7FFF089801464160065F97
459 +)))
867 867  
868 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
461 +(((
462 +**Ext sensor data**=0x7FFF/100=327.67
463 +)))
869 869  
870 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
465 +(((
466 +**Temp**=0x088E/100=22.00
467 +)))
871 871  
872 -
873 -==== 2.3.3.11  BH1750 Illumination Sensor ====
874 -
875 -
876 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
877 -
878 -[[image:image-20230512172447-4.png||height="416" width="712"]]
879 -
880 -
881 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
882 -
883 -
884 -==== 2.3.3.12  PWM MOD ====
885 -
886 -
887 -* (((
888 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
469 +(((
470 +**Hum**=0x014B/10=32.6
889 889  )))
890 -* (((
891 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
892 -)))
893 893  
894 - [[image:image-20230817183249-3.png||height="320" width="417"]]
895 -
896 -* (((
897 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
473 +(((
474 +**poll message flag & Ext**=0x41,means reply data,Ext=1
898 898  )))
899 -* (((
900 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
901 -)))
902 -* (((
903 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
904 904  
905 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
906 -
907 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
908 -
909 -b) If the output duration is more than 30 seconds, better to use external power source. 
910 -
911 -
912 -
477 +(((
478 +**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03
913 913  )))
914 914  
915 -==== 2.3.3.13  Working MOD ====
916 916  
482 +(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的
917 917  
918 -The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
484 +== 2.6 Temperature Alarm Feature ==
919 919  
920 -User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
921 921  
922 -Case 7^^th^^ Byte >> 2 & 0x1f:
487 +S31x-LB work flow with Alarm feature.
923 923  
924 -* 0: MOD1
925 -* 1: MOD2
926 -* 2: MOD3
927 -* 3: MOD4
928 -* 4: MOD5
929 -* 5: MOD6
930 -* 6: MOD7
931 -* 7: MOD8
932 -* 8: MOD9
933 -* 9: MOD10
934 934  
935 -== 2.4 Payload Decoder file ==
490 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]]
936 936  
937 937  
938 -In TTN, use can add a custom payload so it shows friendly reading
493 +== 2.7 Frequency Plans ==
939 939  
940 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
941 941  
942 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
496 +The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
943 943  
944 -
945 -== 2.5 Frequency Plans ==
946 -
947 -
948 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
949 -
950 950  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
951 951  
952 952  
953 -= 3. Configure SN50v3-LB =
501 += 3. Configure S31x-LB =
954 954  
955 955  == 3.1 Configure Methods ==
956 956  
957 957  
958 -SN50v3-LB supports below configure method:
506 +S31x-LB supports below configure method:
959 959  
960 960  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
961 961  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -974,10 +974,10 @@
974 974  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
975 975  
976 976  
977 -== 3.3 Commands special design for SN50v3-LB ==
525 +== 3.3 Commands special design for S31x-LB ==
978 978  
979 979  
980 -These commands only valid for SN50v3-LB, as below:
528 +These commands only valid for S31x-LB, as below:
981 981  
982 982  
983 983  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -988,7 +988,7 @@
988 988  (% style="color:blue" %)**AT Command: AT+TDC**
989 989  
990 990  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
991 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
539 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
992 992  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
993 993  30000
994 994  OK
... ... @@ -1011,223 +1011,119 @@
1011 1011  === 3.3.2 Get Device Status ===
1012 1012  
1013 1013  
1014 -Send a LoRaWAN downlink to ask the device to send its status.
562 +Send a LoRaWAN downlink to ask device send Alarm settings.
1015 1015  
1016 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
564 +(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
1017 1017  
1018 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
566 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
1019 1019  
1020 1020  
1021 -=== 3.3.3 Set Interrupt Mode ===
569 +=== 3.3.3 Set Temperature Alarm Threshold ===
1022 1022  
571 +* (% style="color:blue" %)**AT Command:**
1023 1023  
1024 -Feature, Set Interrupt mode for GPIO_EXIT.
573 +(% style="color:#037691" %)**AT+SHTEMP=min,max**
1025 1025  
1026 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
575 +* When min=0, and max≠0, Alarm higher than max
576 +* When min≠0, and max=0, Alarm lower than min
577 +* When min≠0 and max≠0, Alarm higher than max or lower than min
1027 1027  
1028 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1029 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1030 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1031 -0
1032 -OK
1033 -the mode is 0 =Disable Interrupt
1034 -)))
1035 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
1036 -Set Transmit Interval
1037 -0. (Disable Interrupt),
1038 -~1. (Trigger by rising and falling edge)
1039 -2. (Trigger by falling edge)
1040 -3. (Trigger by rising edge)
1041 -)))|(% style="width:157px" %)OK
1042 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1043 -Set Transmit Interval
1044 -trigger by rising edge.
1045 -)))|(% style="width:157px" %)OK
1046 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
579 +Example:
1047 1047  
1048 -(% style="color:blue" %)**Downlink Command: 0x06**
581 + AT+SHTEMP=0,30   ~/~/ Alarm when temperature higher than 30.
1049 1049  
1050 -Format: Command Code (0x06) followed by 3 bytes.
583 +* (% style="color:blue" %)**Downlink Payload:**
1051 1051  
1052 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
585 +(% style="color:#037691" %)**0x(0C 01 00 1E)**  (%%) ~/~/ Set AT+SHTEMP=0,30
1053 1053  
1054 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1055 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1056 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1057 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
587 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)**
1058 1058  
1059 -=== 3.3.4 Set Power Output Duration ===
1060 1060  
590 +=== 3.3.4 Set Humidity Alarm Threshold ===
1061 1061  
1062 -Control the output duration 5V . Before each sampling, device will
592 +* (% style="color:blue" %)**AT Command:**
1063 1063  
1064 -~1. first enable the power output to external sensor,
594 +(% style="color:#037691" %)**AT+SHHUM=min,max**
1065 1065  
1066 -2. keep it on as per duration, read sensor value and construct uplink payload
596 +* When min=0, and max≠0, Alarm higher than max
597 +* When min≠0, and max=0, Alarm lower than min
598 +* When min≠0 and max≠0, Alarm higher than max or lower than min
1067 1067  
1068 -3. final, close the power output.
600 +Example:
1069 1069  
1070 -(% style="color:blue" %)**AT Command: AT+5VT**
602 + AT+SHHUM=70,0  ~/~/ Alarm when humidity lower than 70%.
1071 1071  
1072 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1073 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1074 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1075 -500(default)
1076 -OK
1077 -)))
1078 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1079 -Close after a delay of 1000 milliseconds.
1080 -)))|(% style="width:157px" %)OK
604 +* (% style="color:blue" %)**Downlink Payload:**
1081 1081  
1082 -(% style="color:blue" %)**Downlink Command: 0x07**
606 +(% style="color:#037691" %)**0x(0C 02 46 00)**(%%)  ~/~/ Set AT+SHTHUM=70,0
1083 1083  
1084 -Format: Command Code (0x07) followed by 2 bytes.
608 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))**
1085 1085  
1086 -The first and second bytes are the time to turn on.
1087 1087  
1088 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1089 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
611 +=== 3.3.5 Set Alarm Interval ===
1090 1090  
1091 -=== 3.3.5 Set Weighing parameters ===
613 +The shortest time of two Alarm packet. (unit: min)
1092 1092  
615 +* (% style="color:blue" %)**AT Command:**
1093 1093  
1094 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
617 +(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes.
1095 1095  
1096 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
619 +* (% style="color:blue" %)**Downlink Payload:**
1097 1097  
1098 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1099 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1100 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1101 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1102 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
621 +(% style="color:#037691" %)**0x(0D 00 1E)**(%%)     **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes
1103 1103  
1104 -(% style="color:blue" %)**Downlink Command: 0x08**
1105 1105  
1106 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
624 +=== 3.3.6 Get Alarm settings ===
1107 1107  
1108 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1109 1109  
1110 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
627 +Send a LoRaWAN downlink to ask device send Alarm settings.
1111 1111  
1112 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1113 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1114 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
629 +* (% style="color:#037691" %)**Downlink Payload:  **(%%)0x0E 01
1115 1115  
1116 -=== 3.3.6 Set Digital pulse count value ===
631 +**Example:**
1117 1117  
633 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]
1118 1118  
1119 -Feature: Set the pulse count value.
1120 1120  
1121 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
636 +**Explain:**
1122 1122  
1123 -(% style="color:blue" %)**AT Command: AT+SETCNT**
638 +* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message.
1124 1124  
1125 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1126 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1127 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1128 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
640 +=== 3.3.7 Set Interrupt Mode ===
1129 1129  
1130 -(% style="color:blue" %)**Downlink Command: 0x09**
1131 1131  
1132 -Format: Command Code (0x09) followed by 5 bytes.
643 +Feature, Set Interrupt mode for GPIO_EXIT.
1133 1133  
1134 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
645 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1135 1135  
1136 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1137 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1138 -
1139 -=== 3.3.7 Set Workmode ===
1140 -
1141 -
1142 -Feature: Switch working mode.
1143 -
1144 -(% style="color:blue" %)**AT Command: AT+MOD**
1145 -
1146 1146  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1147 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1148 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
648 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
649 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
650 +0
1149 1149  OK
652 +the mode is 0 =Disable Interrupt
1150 1150  )))
1151 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1152 -OK
1153 -Attention:Take effect after ATZ
1154 -)))
654 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
655 +Set Transmit Interval
656 +0. (Disable Interrupt),
657 +~1. (Trigger by rising and falling edge)
658 +2. (Trigger by falling edge)
659 +3. (Trigger by rising edge)
660 +)))|(% style="width:157px" %)OK
1155 1155  
1156 -(% style="color:blue" %)**Downlink Command: 0x0A**
662 +(% style="color:blue" %)**Downlink Command: 0x06**
1157 1157  
1158 -Format: Command Code (0x0A) followed by 1 bytes.
664 +Format: Command Code (0x06) followed by 3 bytes.
1159 1159  
1160 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1161 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
666 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1162 1162  
1163 -=== 3.3.8 PWM setting ===
668 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
669 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1164 1164  
1165 -
1166 -* Feature: Set the time acquisition unit for PWM input capture.
1167 -
1168 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1169 -
1170 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1171 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1172 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1173 -0(default)
1174 -
1175 -OK
1176 -)))
1177 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1178 -OK
1179 -
1180 -)))
1181 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1182 -
1183 -(% style="color:blue" %)**Downlink Command: 0x0C**
1184 -
1185 -Format: Command Code (0x0C) followed by 1 bytes.
1186 -
1187 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1188 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1189 -
1190 -* Feature: Set the time acquisition unit for PWM input capture.
1191 -
1192 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1193 -
1194 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:580px" %)
1195 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1196 -|(% style="width:154px" %)AT+PWMOUT=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1197 -0,0,0(default)
1198 -
1199 -OK
1200 -)))
1201 -|(% style="width:154px" %)AT+PWMOUT=0,0,0|(% style="width:196px" %)The default is PWM input detection|(% style="width:157px" %)(((
1202 -OK
1203 -
1204 -)))
1205 -|(% style="width:154px" %)AT+PWMOUT=a,b,c|(% style="width:250px" %)(((
1206 -PWM output.
1207 -
1208 -a: Output time (unit: seconds)
1209 -
1210 -b: Output frequency (unit: HZ)
1211 -
1212 -c: Output duty cycle (unit: %)
1213 -)))|(% style="width:157px" %)(((
1214 -OK
1215 -)))
1216 -
1217 -
1218 -(% style="color:blue" %)**Downlink Command: 0x0C**
1219 -
1220 -
1221 -Format: Command Code (0x0C) followed by 1 bytes.
1222 -
1223 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1224 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1225 -
1226 -
1227 1227  = 4. Battery & Power Consumption =
1228 1228  
1229 1229  
1230 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
674 +S31x-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1231 1231  
1232 1232  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1233 1233  
... ... @@ -1236,78 +1236,63 @@
1236 1236  
1237 1237  
1238 1238  (% class="wikigeneratedid" %)
1239 -**User can change firmware SN50v3-LB to:**
683 +User can change firmware S31x-LB to:
1240 1240  
1241 1241  * Change Frequency band/ region.
1242 1242  * Update with new features.
1243 1243  * Fix bugs.
1244 1244  
1245 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
689 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1246 1246  
1247 -**Methods to Update Firmware:**
1248 1248  
1249 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1250 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
692 +Methods to Update Firmware:
1251 1251  
694 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
695 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
696 +
1252 1252  = 6. FAQ =
1253 1253  
1254 -== 6.1 Where can i find source code of SN50v3-LB? ==
1255 1255  
1256 1256  
1257 -* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1258 -* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1259 -
1260 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1261 -
1262 -
1263 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1264 -
1265 -
1266 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1267 -
1268 -
1269 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1270 -
1271 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1272 -
1273 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1274 -
1275 -
1276 1276  = 7. Order Info =
1277 1277  
1278 1278  
1279 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
704 +Part Number: (% style="color:blue" %)**S31-LB-XX  / S31B-LB-XX**
1280 1280  
1281 1281  (% style="color:red" %)**XX**(%%): The default frequency band
1282 1282  
1283 1283  * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
709 +
1284 1284  * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
711 +
1285 1285  * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
713 +
1286 1286  * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
715 +
1287 1287  * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
717 +
1288 1288  * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
719 +
1289 1289  * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
721 +
1290 1290  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1291 1291  
1292 -(% style="color:red" %)**YY: ** (%%)Hole Option
724 += =
1293 1293  
1294 -* (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1295 -* (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1296 -* (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1297 -* (% style="color:red" %)**NH**(%%): No Hole
1298 -
1299 1299  = 8. ​Packing Info =
1300 1300  
1301 -
1302 1302  (% style="color:#037691" %)**Package Includes**:
1303 1303  
1304 -* SN50v3-LB LoRaWAN Generic Node
730 +* S31x-LB LoRaWAN Temperature & Humidity Sensor
1305 1305  
1306 1306  (% style="color:#037691" %)**Dimension and weight**:
1307 1307  
1308 1308  * Device Size: cm
735 +
1309 1309  * Device Weight: g
737 +
1310 1310  * Package Size / pcs : cm
739 +
1311 1311  * Weight / pcs : g
1312 1312  
1313 1313  = 9. Support =
... ... @@ -1314,5 +1314,4 @@
1314 1314  
1315 1315  
1316 1316  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1317 -
1318 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
746 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230512163509-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20230512164658-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512170701-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.5 MB
Content
image-20230512172447-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512173758-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.1 MB
Content
image-20230512173903-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180609-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180718-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512181814-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.2 MB
Content
image-20230513084523-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -611.3 KB
Content
image-20230513102034-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -607.1 KB
Content
image-20230513103633-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -595.5 KB
Content
image-20230513105207-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -384.7 KB
Content
image-20230513105351-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20230513110214-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -172.7 KB
Content
image-20230513111203-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -79.9 KB
Content
image-20230513111231-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
image-20230513111255-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0