<
From version < 76.1 >
edited by Mengting Qiu
on 2023/12/12 19:04
To version < 72.1 >
edited by Saxer Lin
on 2023/08/18 09:47
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Saxer
Content
... ... @@ -19,7 +19,7 @@
19 19  
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
... ... @@ -27,6 +27,7 @@
27 27  
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 +
30 30  == 1.2 ​Features ==
31 31  
32 32  
... ... @@ -580,16 +580,13 @@
580 580  
581 581  ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
582 582  
583 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
584 -
585 585  In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
586 586  
587 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
586 +[[It should be noted when using PWM mode.>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/#H2.3.3.12A0PWMMOD]]
588 588  
589 589  
590 590  ===== 2.3.2.10.a  Uplink, PWM input capture =====
591 591  
592 -
593 593  [[image:image-20230817172209-2.png||height="439" width="683"]]
594 594  
595 595  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
... ... @@ -613,33 +613,44 @@
613 613  
614 614  When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
615 615  
616 -**Frequency:**
614 +Frequency:
617 617  
618 618  (% class="MsoNormal" %)
619 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
617 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0 ,**
620 620  
621 -(% class="MsoNormal" %)
622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
619 +(((
623 623  
624 624  
622 +(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
623 +)))
624 +
625 625  (% class="MsoNormal" %)
626 -**Duty cycle:**
626 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1 ,**
627 627  
628 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
628 +(((
629 629  
630 -[[image:image-20230818092200-1.png||height="344" width="627"]]
631 631  
632 -===== 2.3.2.10.b  Uplink, PWM input capture =====
631 +(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
632 +)))
633 633  
634 +(% class="MsoNormal" %)
635 +Duty cycle:
634 634  
637 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
635 635  
639 +(% class="MsoNormal" %)
636 636  
637 637  
642 +(((
638 638  
644 +)))
639 639  
640 -===== 2.3.2.10.c  Downlink, PWM output =====
641 641  
647 +[[image:image-20230818092200-1.png||height="344" width="627"]]
642 642  
649 +
650 +===== 2.3.2.10.b  Downlink, PWM output =====
651 +
643 643  [[image:image-20230817173800-3.png||height="412" width="685"]]
644 644  
645 645  Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
... ... @@ -897,18 +897,8 @@
897 897  The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
898 898  )))
899 899  * (((
900 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
901 -)))
902 -* (((
903 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
909 +Since the device can only detect a pulse period of 50ms when AT+PWMSET=0 (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
904 904  
905 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
906 -
907 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
908 -
909 -b) If the output duration is more than 30 seconds, better to use external power source. 
910 -
911 -
912 912  
913 913  )))
914 914  
... ... @@ -1160,11 +1160,12 @@
1160 1160  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1161 1161  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1162 1162  
1163 -=== 3.3.8 PWM setting ===
1164 1164  
1165 1165  
1166 -* Feature: Set the time acquisition unit for PWM input capture.
1164 +=== 3.3.8 PWM setting ===
1167 1167  
1166 +Feature: Set the time acquisition unit for PWM input capture.
1167 +
1168 1168  (% style="color:blue" %)**AT Command: AT+PWMSET**
1169 1169  
1170 1170  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -1187,43 +1187,7 @@
1187 1187  * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1188 1188  * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1189 1189  
1190 -* Feature: Set the time acquisition unit for PWM input capture.
1191 1191  
1192 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1193 -
1194 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:580px" %)
1195 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1196 -|(% style="width:154px" %)AT+PWMOUT=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1197 -0,0,0(default)
1198 -
1199 -OK
1200 -)))
1201 -|(% style="width:154px" %)AT+PWMOUT=0,0,0|(% style="width:196px" %)The default is PWM input detection|(% style="width:157px" %)(((
1202 -OK
1203 -
1204 -)))
1205 -|(% style="width:154px" %)AT+PWMOUT=a,b,c|(% style="width:250px" %)(((
1206 -PWM output.
1207 -
1208 -a: Output time (unit: seconds)
1209 -
1210 -b: Output frequency (unit: HZ)
1211 -
1212 -c: Output duty cycle (unit: %)
1213 -)))|(% style="width:157px" %)(((
1214 -OK
1215 -)))
1216 -
1217 -
1218 -(% style="color:blue" %)**Downlink Command: 0x0C**
1219 -
1220 -
1221 -Format: Command Code (0x0C) followed by 1 bytes.
1222 -
1223 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1224 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1225 -
1226 -
1227 1227  = 4. Battery & Power Consumption =
1228 1228  
1229 1229  
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0