Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
Uploaded new attachment "image-20230818092200-1.png", version {1}
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. ting1 +XWiki.Saxer - Content
-
... ... @@ -19,7 +19,7 @@ 19 19 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 ... ... @@ -27,6 +27,7 @@ 27 27 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 + 30 30 == 1.2 Features == 31 31 32 32 ... ... @@ -580,16 +580,13 @@ 580 580 581 581 ==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 582 582 583 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 584 - 585 585 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 586 586 587 -[[It should be noted when using PWM mode.>> ||anchor="H2.3.3.12A0PWMMOD"]]586 +[[It should be noted when using PWM mode.>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/#H2.3.3.12A0PWMMOD]] 588 588 589 589 590 590 ===== 2.3.2.10.a Uplink, PWM input capture ===== 591 591 592 - 593 593 [[image:image-20230817172209-2.png||height="439" width="683"]] 594 594 595 595 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) ... ... @@ -611,35 +611,15 @@ 611 611 [[image:image-20230817170702-1.png||height="161" width="1044"]] 612 612 613 613 614 - Whenthe device detectshefollowingPWMsignal,decoder willconverts thepulseperiod andhigh-leveldurationto frequencyandduty cycle.612 +(% style="color:blue" %)**AT+PWMSET=AA(Default is 0) ==> Corresponding downlink: 0B AA** 615 615 616 - **Frequency:**614 +When AA is 0, the unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. 617 617 618 -(% class="MsoNormal" %) 619 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 616 +When AA is 1, the unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. 620 620 621 -(% class="MsoNormal" %) 622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 623 623 619 +===== 2.3.2.10.b Downlink, PWM output ===== 624 624 625 -(% class="MsoNormal" %) 626 -**Duty cycle:** 627 - 628 -Duty cycle= Duration of high level/ Pulse period*100 ~(%). 629 - 630 -[[image:image-20230818092200-1.png||height="344" width="627"]] 631 - 632 -===== 2.3.2.10.b Uplink, PWM input capture ===== 633 - 634 - 635 - 636 - 637 - 638 - 639 - 640 -===== 2.3.2.10.c Downlink, PWM output ===== 641 - 642 - 643 643 [[image:image-20230817173800-3.png||height="412" width="685"]] 644 644 645 645 Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** ... ... @@ -897,18 +897,8 @@ 897 897 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 898 898 ))) 899 899 * ((( 900 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 901 -))) 902 -* ((( 903 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 878 +Since the device can only detect a pulse period of 50ms when AT+PWMSET=0 (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 904 904 905 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 906 - 907 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used. 908 - 909 -b) If the output duration is more than 30 seconds, better to use external power source. 910 - 911 - 912 912 913 913 ))) 914 914 ... ... @@ -1160,70 +1160,6 @@ 1160 1160 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1161 1161 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1162 1162 1163 -=== 3.3.8 PWM setting === 1164 - 1165 - 1166 -* Feature: Set the time acquisition unit for PWM input capture. 1167 - 1168 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1169 - 1170 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1171 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1172 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1173 -0(default) 1174 - 1175 -OK 1176 -))) 1177 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)((( 1178 -OK 1179 - 1180 -))) 1181 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK 1182 - 1183 -(% style="color:blue" %)**Downlink Command: 0x0C** 1184 - 1185 -Format: Command Code (0x0C) followed by 1 bytes. 1186 - 1187 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1188 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1189 - 1190 -* Feature: Set the time acquisition unit for PWM input capture. 1191 - 1192 -(% style="color:blue" %)**AT Command: AT+PWMOUT** 1193 - 1194 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:580px" %) 1195 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1196 -|(% style="width:154px" %)AT+PWMOUT=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1197 -0,0,0(default) 1198 - 1199 -OK 1200 -))) 1201 -|(% style="width:154px" %)AT+PWMOUT=0,0,0|(% style="width:196px" %)The default is PWM input detection|(% style="width:157px" %)((( 1202 -OK 1203 - 1204 -))) 1205 -|(% style="width:154px" %)AT+PWMOUT=a,b,c|(% style="width:250px" %)((( 1206 -PWM output. 1207 - 1208 -a: Output time (unit: seconds) 1209 - 1210 -b: Output frequency (unit: HZ) 1211 - 1212 -c: Output duty cycle (unit: %) 1213 -)))|(% style="width:157px" %)((( 1214 -OK 1215 -))) 1216 - 1217 - 1218 -(% style="color:blue" %)**Downlink Command: 0x0C** 1219 - 1220 - 1221 -Format: Command Code (0x0C) followed by 1 bytes. 1222 - 1223 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1224 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1225 - 1226 - 1227 1227 = 4. Battery & Power Consumption = 1228 1228 1229 1229