<
From version < 76.1 >
edited by Mengting Qiu
on 2023/12/12 19:04
To version < 68.1 >
edited by Saxer Lin
on 2023/08/17 18:32
>
Change comment: Uploaded new attachment "image-20230817183249-3.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Saxer
Content
... ... @@ -19,7 +19,7 @@
19 19  
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
... ... @@ -27,6 +27,7 @@
27 27  
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 +
30 30  == 1.2 ​Features ==
31 31  
32 32  
... ... @@ -40,6 +40,7 @@
40 40  * Downlink to change configure
41 41  * 8500mAh Battery for long term use
42 42  
44 +
43 43  == 1.3 Specification ==
44 44  
45 45  
... ... @@ -77,6 +77,7 @@
77 77  * Sleep Mode: 5uA @ 3.3v
78 78  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79 79  
82 +
80 80  == 1.4 Sleep mode and working mode ==
81 81  
82 82  
... ... @@ -104,6 +104,7 @@
104 104  )))
105 105  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106 106  
110 +
107 107  == 1.6 BLE connection ==
108 108  
109 109  
... ... @@ -580,16 +580,11 @@
580 580  
581 581  ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
582 582  
583 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
584 -
585 585  In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
586 586  
587 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
588 588  
589 -
590 590  ===== 2.3.2.10.a  Uplink, PWM input capture =====
591 591  
592 -
593 593  [[image:image-20230817172209-2.png||height="439" width="683"]]
594 594  
595 595  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
... ... @@ -611,35 +611,15 @@
611 611  [[image:image-20230817170702-1.png||height="161" width="1044"]]
612 612  
613 613  
614 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
613 +(% style="color:blue" %)**AT+PWMSET=AA(Default is 0)  ==> Corresponding downlink: 0B AA**
615 615  
616 -**Frequency:**
615 +When AA is 0, the unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. 
617 617  
618 -(% class="MsoNormal" %)
619 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
617 +When AA is 1, the unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. 
620 620  
621 -(% class="MsoNormal" %)
622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
623 623  
620 +===== 2.3.2.10.b  Downlink, PWM output =====
624 624  
625 -(% class="MsoNormal" %)
626 -**Duty cycle:**
627 -
628 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
629 -
630 -[[image:image-20230818092200-1.png||height="344" width="627"]]
631 -
632 -===== 2.3.2.10.b  Uplink, PWM input capture =====
633 -
634 -
635 -
636 -
637 -
638 -
639 -
640 -===== 2.3.2.10.c  Downlink, PWM output =====
641 -
642 -
643 643  [[image:image-20230817173800-3.png||height="412" width="685"]]
644 644  
645 645  Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
... ... @@ -884,34 +884,6 @@
884 884  ==== 2.3.3.12  PWM MOD ====
885 885  
886 886  
887 -* (((
888 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
889 -)))
890 -* (((
891 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
892 -)))
893 -
894 - [[image:image-20230817183249-3.png||height="320" width="417"]]
895 -
896 -* (((
897 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
898 -)))
899 -* (((
900 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
901 -)))
902 -* (((
903 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
904 -
905 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
906 -
907 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
908 -
909 -b) If the output duration is more than 30 seconds, better to use external power source. 
910 -
911 -
912 -
913 -)))
914 -
915 915  ==== 2.3.3.13  Working MOD ====
916 916  
917 917  
... ... @@ -932,6 +932,7 @@
932 932  * 8: MOD9
933 933  * 9: MOD10
934 934  
886 +
935 935  == 2.4 Payload Decoder file ==
936 936  
937 937  
... ... @@ -961,6 +961,7 @@
961 961  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
962 962  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
963 963  
916 +
964 964  == 3.2 General Commands ==
965 965  
966 966  
... ... @@ -1008,6 +1008,7 @@
1008 1008  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1009 1009  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1010 1010  
964 +
1011 1011  === 3.3.2 Get Device Status ===
1012 1012  
1013 1013  
... ... @@ -1056,6 +1056,7 @@
1056 1056  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1057 1057  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1058 1058  
1013 +
1059 1059  === 3.3.4 Set Power Output Duration ===
1060 1060  
1061 1061  
... ... @@ -1088,6 +1088,7 @@
1088 1088  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1089 1089  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1090 1090  
1046 +
1091 1091  === 3.3.5 Set Weighing parameters ===
1092 1092  
1093 1093  
... ... @@ -1113,6 +1113,7 @@
1113 1113  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1114 1114  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1115 1115  
1072 +
1116 1116  === 3.3.6 Set Digital pulse count value ===
1117 1117  
1118 1118  
... ... @@ -1136,6 +1136,7 @@
1136 1136  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1137 1137  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1138 1138  
1096 +
1139 1139  === 3.3.7 Set Workmode ===
1140 1140  
1141 1141  
... ... @@ -1160,70 +1160,7 @@
1160 1160  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1161 1161  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1162 1162  
1163 -=== 3.3.8 PWM setting ===
1164 1164  
1165 -
1166 -* Feature: Set the time acquisition unit for PWM input capture.
1167 -
1168 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1169 -
1170 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1171 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1172 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1173 -0(default)
1174 -
1175 -OK
1176 -)))
1177 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1178 -OK
1179 -
1180 -)))
1181 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1182 -
1183 -(% style="color:blue" %)**Downlink Command: 0x0C**
1184 -
1185 -Format: Command Code (0x0C) followed by 1 bytes.
1186 -
1187 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1188 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1189 -
1190 -* Feature: Set the time acquisition unit for PWM input capture.
1191 -
1192 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1193 -
1194 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:580px" %)
1195 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1196 -|(% style="width:154px" %)AT+PWMOUT=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1197 -0,0,0(default)
1198 -
1199 -OK
1200 -)))
1201 -|(% style="width:154px" %)AT+PWMOUT=0,0,0|(% style="width:196px" %)The default is PWM input detection|(% style="width:157px" %)(((
1202 -OK
1203 -
1204 -)))
1205 -|(% style="width:154px" %)AT+PWMOUT=a,b,c|(% style="width:250px" %)(((
1206 -PWM output.
1207 -
1208 -a: Output time (unit: seconds)
1209 -
1210 -b: Output frequency (unit: HZ)
1211 -
1212 -c: Output duty cycle (unit: %)
1213 -)))|(% style="width:157px" %)(((
1214 -OK
1215 -)))
1216 -
1217 -
1218 -(% style="color:blue" %)**Downlink Command: 0x0C**
1219 -
1220 -
1221 -Format: Command Code (0x0C) followed by 1 bytes.
1222 -
1223 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1224 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1225 -
1226 -
1227 1227  = 4. Battery & Power Consumption =
1228 1228  
1229 1229  
... ... @@ -1249,6 +1249,7 @@
1249 1249  * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1250 1250  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1251 1251  
1147 +
1252 1252  = 6. FAQ =
1253 1253  
1254 1254  == 6.1 Where can i find source code of SN50v3-LB? ==
... ... @@ -1257,6 +1257,7 @@
1257 1257  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1258 1258  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1259 1259  
1156 +
1260 1260  == 6.2 How to generate PWM Output in SN50v3-LB? ==
1261 1261  
1262 1262  
... ... @@ -1296,6 +1296,7 @@
1296 1296  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1297 1297  * (% style="color:red" %)**NH**(%%): No Hole
1298 1298  
1196 +
1299 1299  = 8. ​Packing Info =
1300 1300  
1301 1301  
... ... @@ -1310,6 +1310,7 @@
1310 1310  * Package Size / pcs : cm
1311 1311  * Weight / pcs : g
1312 1312  
1211 +
1313 1313  = 9. Support =
1314 1314  
1315 1315  
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0