Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
Uploaded new attachment "image-20230817173800-3.png", version {1}
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 6 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. ting1 +XWiki.Saxer - Content
-
... ... @@ -19,7 +19,7 @@ 19 19 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 ... ... @@ -27,6 +27,7 @@ 27 27 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 + 30 30 == 1.2 Features == 31 31 32 32 ... ... @@ -40,6 +40,8 @@ 40 40 * Downlink to change configure 41 41 * 8500mAh Battery for long term use 42 42 44 + 45 + 43 43 == 1.3 Specification == 44 44 45 45 ... ... @@ -77,6 +77,8 @@ 77 77 * Sleep Mode: 5uA @ 3.3v 78 78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 79 79 83 + 84 + 80 80 == 1.4 Sleep mode and working mode == 81 81 82 82 ... ... @@ -104,6 +104,8 @@ 104 104 ))) 105 105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 106 106 112 + 113 + 107 107 == 1.6 BLE connection == 108 108 109 109 ... ... @@ -578,86 +578,6 @@ 578 578 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 579 579 580 580 581 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 582 - 583 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 584 - 585 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 586 - 587 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 588 - 589 - 590 -===== 2.3.2.10.a Uplink, PWM input capture ===== 591 - 592 - 593 -[[image:image-20230817172209-2.png||height="439" width="683"]] 594 - 595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 596 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 597 -|Value|Bat|(% style="width:191px" %)((( 598 -Temperature(DS18B20)(PC13) 599 -)))|(% style="width:78px" %)((( 600 -ADC(PA4) 601 -)))|(% style="width:135px" %)((( 602 -PWM_Setting 603 - 604 -&Digital Interrupt(PA8) 605 -)))|(% style="width:70px" %)((( 606 -Pulse period 607 -)))|(% style="width:89px" %)((( 608 -Duration of high level 609 -))) 610 - 611 -[[image:image-20230817170702-1.png||height="161" width="1044"]] 612 - 613 - 614 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 615 - 616 -**Frequency:** 617 - 618 -(% class="MsoNormal" %) 619 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 620 - 621 -(% class="MsoNormal" %) 622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 623 - 624 - 625 -(% class="MsoNormal" %) 626 -**Duty cycle:** 627 - 628 -Duty cycle= Duration of high level/ Pulse period*100 ~(%). 629 - 630 -[[image:image-20230818092200-1.png||height="344" width="627"]] 631 - 632 -===== 2.3.2.10.b Uplink, PWM input capture ===== 633 - 634 - 635 - 636 - 637 - 638 - 639 - 640 -===== 2.3.2.10.c Downlink, PWM output ===== 641 - 642 - 643 -[[image:image-20230817173800-3.png||height="412" width="685"]] 644 - 645 -Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 646 - 647 - xx xx xx is the output frequency, the unit is HZ. 648 - 649 - yy is the duty cycle of the output, the unit is %. 650 - 651 - zz zz is the time delay of the output, the unit is ms. 652 - 653 - 654 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 655 - 656 -The oscilloscope displays as follows: 657 - 658 -[[image:image-20230817173858-5.png||height="694" width="921"]] 659 - 660 - 661 661 === 2.3.3 Decode payload === 662 662 663 663 ... ... @@ -881,40 +881,9 @@ 881 881 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 882 882 883 883 884 -==== 2.3.3.12 PWMMOD ====811 +==== 2.3.3.12 Working MOD ==== 885 885 886 886 887 -* ((( 888 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 889 -))) 890 -* ((( 891 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 892 -))) 893 - 894 - [[image:image-20230817183249-3.png||height="320" width="417"]] 895 - 896 -* ((( 897 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 898 -))) 899 -* ((( 900 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 901 -))) 902 -* ((( 903 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 904 - 905 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 906 - 907 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used. 908 - 909 -b) If the output duration is more than 30 seconds, better to use external power source. 910 - 911 - 912 - 913 -))) 914 - 915 -==== 2.3.3.13 Working MOD ==== 916 - 917 - 918 918 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 919 919 920 920 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -930,8 +930,9 @@ 930 930 * 6: MOD7 931 931 * 7: MOD8 932 932 * 8: MOD9 933 -* 9: MOD10 934 934 830 + 831 + 935 935 == 2.4 Payload Decoder file == 936 936 937 937 ... ... @@ -961,6 +961,8 @@ 961 961 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 962 962 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 963 963 861 + 862 + 964 964 == 3.2 General Commands == 965 965 966 966 ... ... @@ -1008,6 +1008,8 @@ 1008 1008 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 1009 1009 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 1010 1010 910 + 911 + 1011 1011 === 3.3.2 Get Device Status === 1012 1012 1013 1013 ... ... @@ -1056,6 +1056,8 @@ 1056 1056 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 1057 1057 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 1058 1058 960 + 961 + 1059 1059 === 3.3.4 Set Power Output Duration === 1060 1060 1061 1061 ... ... @@ -1088,6 +1088,8 @@ 1088 1088 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1089 1089 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1090 1090 994 + 995 + 1091 1091 === 3.3.5 Set Weighing parameters === 1092 1092 1093 1093 ... ... @@ -1113,6 +1113,8 @@ 1113 1113 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1114 1114 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1115 1115 1021 + 1022 + 1116 1116 === 3.3.6 Set Digital pulse count value === 1117 1117 1118 1118 ... ... @@ -1136,6 +1136,8 @@ 1136 1136 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1137 1137 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1138 1138 1046 + 1047 + 1139 1139 === 3.3.7 Set Workmode === 1140 1140 1141 1141 ... ... @@ -1160,70 +1160,8 @@ 1160 1160 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1161 1161 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1162 1162 1163 -=== 3.3.8 PWM setting === 1164 1164 1165 1165 1166 -* Feature: Set the time acquisition unit for PWM input capture. 1167 - 1168 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1169 - 1170 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1171 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1172 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1173 -0(default) 1174 - 1175 -OK 1176 -))) 1177 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)((( 1178 -OK 1179 - 1180 -))) 1181 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK 1182 - 1183 -(% style="color:blue" %)**Downlink Command: 0x0C** 1184 - 1185 -Format: Command Code (0x0C) followed by 1 bytes. 1186 - 1187 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1188 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1189 - 1190 -* Feature: Set the time acquisition unit for PWM input capture. 1191 - 1192 -(% style="color:blue" %)**AT Command: AT+PWMOUT** 1193 - 1194 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:580px" %) 1195 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1196 -|(% style="width:154px" %)AT+PWMOUT=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1197 -0,0,0(default) 1198 - 1199 -OK 1200 -))) 1201 -|(% style="width:154px" %)AT+PWMOUT=0,0,0|(% style="width:196px" %)The default is PWM input detection|(% style="width:157px" %)((( 1202 -OK 1203 - 1204 -))) 1205 -|(% style="width:154px" %)AT+PWMOUT=a,b,c|(% style="width:250px" %)((( 1206 -PWM output. 1207 - 1208 -a: Output time (unit: seconds) 1209 - 1210 -b: Output frequency (unit: HZ) 1211 - 1212 -c: Output duty cycle (unit: %) 1213 -)))|(% style="width:157px" %)((( 1214 -OK 1215 -))) 1216 - 1217 - 1218 -(% style="color:blue" %)**Downlink Command: 0x0C** 1219 - 1220 - 1221 -Format: Command Code (0x0C) followed by 1 bytes. 1222 - 1223 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1224 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1225 - 1226 - 1227 1227 = 4. Battery & Power Consumption = 1228 1228 1229 1229 ... ... @@ -1249,6 +1249,8 @@ 1249 1249 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1250 1250 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1251 1251 1099 + 1100 + 1252 1252 = 6. FAQ = 1253 1253 1254 1254 == 6.1 Where can i find source code of SN50v3-LB? == ... ... @@ -1257,6 +1257,8 @@ 1257 1257 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1258 1258 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1259 1259 1109 + 1110 + 1260 1260 == 6.2 How to generate PWM Output in SN50v3-LB? == 1261 1261 1262 1262 ... ... @@ -1296,6 +1296,8 @@ 1296 1296 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1297 1297 * (% style="color:red" %)**NH**(%%): No Hole 1298 1298 1150 + 1151 + 1299 1299 = 8. Packing Info = 1300 1300 1301 1301 ... ... @@ -1310,6 +1310,8 @@ 1310 1310 * Package Size / pcs : cm 1311 1311 * Weight / pcs : g 1312 1312 1166 + 1167 + 1313 1313 = 9. Support = 1314 1314 1315 1315
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.9 KB - Content