<
From version < 76.1 >
edited by Mengting Qiu
on 2023/12/12 19:04
To version < 48.1 >
edited by Saxer Lin
on 2023/06/10 16:32
>
Change comment: Uploaded new attachment "image-20230610163213-1.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Saxer
Content
... ... @@ -19,7 +19,7 @@
19 19  
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
... ... @@ -27,6 +27,7 @@
27 27  
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 +
30 30  == 1.2 ​Features ==
31 31  
32 32  
... ... @@ -40,6 +40,7 @@
40 40  * Downlink to change configure
41 41  * 8500mAh Battery for long term use
42 42  
44 +
43 43  == 1.3 Specification ==
44 44  
45 45  
... ... @@ -77,6 +77,7 @@
77 77  * Sleep Mode: 5uA @ 3.3v
78 78  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79 79  
82 +
80 80  == 1.4 Sleep mode and working mode ==
81 81  
82 82  
... ... @@ -104,6 +104,7 @@
104 104  )))
105 105  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106 106  
110 +
107 107  == 1.6 BLE connection ==
108 108  
109 109  
... ... @@ -122,7 +122,7 @@
122 122  == 1.7 Pin Definitions ==
123 123  
124 124  
125 -[[image:image-20230610163213-1.png||height="404" width="699"]]
129 +[[image:image-20230610162852-1.png||height="466" width="802"]]
126 126  
127 127  
128 128  == 1.8 Mechanical ==
... ... @@ -226,33 +226,33 @@
226 226  
227 227  (% style="color:#037691" %)**Frequency Band**:
228 228  
229 -0x01: EU868
233 +*0x01: EU868
230 230  
231 -0x02: US915
235 +*0x02: US915
232 232  
233 -0x03: IN865
237 +*0x03: IN865
234 234  
235 -0x04: AU915
239 +*0x04: AU915
236 236  
237 -0x05: KZ865
241 +*0x05: KZ865
238 238  
239 -0x06: RU864
243 +*0x06: RU864
240 240  
241 -0x07: AS923
245 +*0x07: AS923
242 242  
243 -0x08: AS923-1
247 +*0x08: AS923-1
244 244  
245 -0x09: AS923-2
249 +*0x09: AS923-2
246 246  
247 -0x0a: AS923-3
251 +*0x0a: AS923-3
248 248  
249 -0x0b: CN470
253 +*0x0b: CN470
250 250  
251 -0x0c: EU433
255 +*0x0c: EU433
252 252  
253 -0x0d: KR920
257 +*0x0d: KR920
254 254  
255 -0x0e: MA869
259 +*0x0e: MA869
256 256  
257 257  
258 258  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -328,8 +328,9 @@
328 328  )))|(% style="width:189px" %)(((
329 329  Digital in(PB15) & Digital Interrupt(PA8)
330 330  )))|(% style="width:208px" %)(((
331 -Distance measure by: 1) LIDAR-Lite V3HP
332 -Or 2) Ultrasonic Sensor
335 +Distance measure by:1) LIDAR-Lite V3HP
336 +Or
337 +2) Ultrasonic Sensor
333 333  )))|(% style="width:117px" %)Reserved
334 334  
335 335  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
... ... @@ -359,7 +359,8 @@
359 359  ADC(PA4)
360 360  )))|(% style="width:323px" %)(((
361 361  Distance measure by:1)TF-Mini plus LiDAR
362 -Or 2) TF-Luna LiDAR
367 +Or 
368 +2) TF-Luna LiDAR
363 363  )))|(% style="width:188px" %)Distance signal  strength
364 364  
365 365  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
... ... @@ -376,7 +376,7 @@
376 376  
377 377  (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
378 378  
379 -[[image:image-20230610170047-1.png||height="452" width="799"]]
385 +[[image:image-20230513105207-4.png||height="469" width="802"]]
380 380  
381 381  
382 382  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
... ... @@ -466,6 +466,7 @@
466 466  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
467 467  
468 468  
475 +
469 469  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
470 470  
471 471  
... ... @@ -578,86 +578,6 @@
578 578  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
579 579  
580 580  
581 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
582 -
583 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
584 -
585 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
586 -
587 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
588 -
589 -
590 -===== 2.3.2.10.a  Uplink, PWM input capture =====
591 -
592 -
593 -[[image:image-20230817172209-2.png||height="439" width="683"]]
594 -
595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
596 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
597 -|Value|Bat|(% style="width:191px" %)(((
598 -Temperature(DS18B20)(PC13)
599 -)))|(% style="width:78px" %)(((
600 -ADC(PA4)
601 -)))|(% style="width:135px" %)(((
602 -PWM_Setting
603 -
604 -&Digital Interrupt(PA8)
605 -)))|(% style="width:70px" %)(((
606 -Pulse period
607 -)))|(% style="width:89px" %)(((
608 -Duration of high level
609 -)))
610 -
611 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
612 -
613 -
614 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
615 -
616 -**Frequency:**
617 -
618 -(% class="MsoNormal" %)
619 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
620 -
621 -(% class="MsoNormal" %)
622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
623 -
624 -
625 -(% class="MsoNormal" %)
626 -**Duty cycle:**
627 -
628 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
629 -
630 -[[image:image-20230818092200-1.png||height="344" width="627"]]
631 -
632 -===== 2.3.2.10.b  Uplink, PWM input capture =====
633 -
634 -
635 -
636 -
637 -
638 -
639 -
640 -===== 2.3.2.10.c  Downlink, PWM output =====
641 -
642 -
643 -[[image:image-20230817173800-3.png||height="412" width="685"]]
644 -
645 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
646 -
647 - xx xx xx is the output frequency, the unit is HZ.
648 -
649 - yy is the duty cycle of the output, the unit is %.
650 -
651 - zz zz is the time delay of the output, the unit is ms.
652 -
653 -
654 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
655 -
656 -The oscilloscope displays as follows:
657 -
658 -[[image:image-20230817173858-5.png||height="694" width="921"]]
659 -
660 -
661 661  === 2.3.3  ​Decode payload ===
662 662  
663 663  
... ... @@ -721,9 +721,9 @@
721 721  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
722 722  
723 723  
724 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
651 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
725 725  
726 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
653 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
727 727  
728 728  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
729 729  
... ... @@ -731,10 +731,6 @@
731 731  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
732 732  
733 733  
734 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
735 -
736 -[[image:image-20230811113449-1.png||height="370" width="608"]]
737 -
738 738  ==== 2.3.3.5 Digital Interrupt ====
739 739  
740 740  
... ... @@ -803,7 +803,7 @@
803 803  
804 804  Below is the connection to SHT20/ SHT31. The connection is as below:
805 805  
806 -[[image:image-20230610170152-2.png||height="501" width="846"]]
729 +[[image:image-20230513103633-3.png||height="448" width="716"]]
807 807  
808 808  
809 809  The device will be able to get the I2C sensor data now and upload to IoT Server.
... ... @@ -881,40 +881,9 @@
881 881  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
882 882  
883 883  
884 -==== 2.3.3.12  PWM MOD ====
807 +==== 2.3.3.12  Working MOD ====
885 885  
886 886  
887 -* (((
888 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
889 -)))
890 -* (((
891 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
892 -)))
893 -
894 - [[image:image-20230817183249-3.png||height="320" width="417"]]
895 -
896 -* (((
897 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
898 -)))
899 -* (((
900 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
901 -)))
902 -* (((
903 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
904 -
905 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
906 -
907 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
908 -
909 -b) If the output duration is more than 30 seconds, better to use external power source. 
910 -
911 -
912 -
913 -)))
914 -
915 -==== 2.3.3.13  Working MOD ====
916 -
917 -
918 918  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
919 919  
920 920  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -930,8 +930,8 @@
930 930  * 6: MOD7
931 931  * 7: MOD8
932 932  * 8: MOD9
933 -* 9: MOD10
934 934  
826 +
935 935  == 2.4 Payload Decoder file ==
936 936  
937 937  
... ... @@ -961,6 +961,7 @@
961 961  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
962 962  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
963 963  
856 +
964 964  == 3.2 General Commands ==
965 965  
966 966  
... ... @@ -988,7 +988,7 @@
988 988  (% style="color:blue" %)**AT Command: AT+TDC**
989 989  
990 990  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
991 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
884 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
992 992  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
993 993  30000
994 994  OK
... ... @@ -1008,6 +1008,7 @@
1008 1008  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1009 1009  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1010 1010  
904 +
1011 1011  === 3.3.2 Get Device Status ===
1012 1012  
1013 1013  
... ... @@ -1026,7 +1026,7 @@
1026 1026  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1027 1027  
1028 1028  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1029 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
923 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
1030 1030  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1031 1031  0
1032 1032  OK
... ... @@ -1056,6 +1056,7 @@
1056 1056  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1057 1057  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1058 1058  
953 +
1059 1059  === 3.3.4 Set Power Output Duration ===
1060 1060  
1061 1061  
... ... @@ -1070,7 +1070,7 @@
1070 1070  (% style="color:blue" %)**AT Command: AT+5VT**
1071 1071  
1072 1072  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1073 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
968 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
1074 1074  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1075 1075  500(default)
1076 1076  OK
... ... @@ -1088,6 +1088,7 @@
1088 1088  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1089 1089  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1090 1090  
986 +
1091 1091  === 3.3.5 Set Weighing parameters ===
1092 1092  
1093 1093  
... ... @@ -1096,7 +1096,7 @@
1096 1096  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1097 1097  
1098 1098  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1099 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
995 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
1100 1100  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1101 1101  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1102 1102  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -1113,6 +1113,7 @@
1113 1113  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1114 1114  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1115 1115  
1012 +
1116 1116  === 3.3.6 Set Digital pulse count value ===
1117 1117  
1118 1118  
... ... @@ -1123,7 +1123,7 @@
1123 1123  (% style="color:blue" %)**AT Command: AT+SETCNT**
1124 1124  
1125 1125  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1126 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1023 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
1127 1127  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1128 1128  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1129 1129  
... ... @@ -1136,6 +1136,7 @@
1136 1136  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1137 1137  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1138 1138  
1036 +
1139 1139  === 3.3.7 Set Workmode ===
1140 1140  
1141 1141  
... ... @@ -1144,7 +1144,7 @@
1144 1144  (% style="color:blue" %)**AT Command: AT+MOD**
1145 1145  
1146 1146  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1147 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1045 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
1148 1148  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1149 1149  OK
1150 1150  )))
... ... @@ -1160,70 +1160,7 @@
1160 1160  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1161 1161  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1162 1162  
1163 -=== 3.3.8 PWM setting ===
1164 1164  
1165 -
1166 -* Feature: Set the time acquisition unit for PWM input capture.
1167 -
1168 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1169 -
1170 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1171 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1172 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1173 -0(default)
1174 -
1175 -OK
1176 -)))
1177 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1178 -OK
1179 -
1180 -)))
1181 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1182 -
1183 -(% style="color:blue" %)**Downlink Command: 0x0C**
1184 -
1185 -Format: Command Code (0x0C) followed by 1 bytes.
1186 -
1187 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1188 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1189 -
1190 -* Feature: Set the time acquisition unit for PWM input capture.
1191 -
1192 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1193 -
1194 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:580px" %)
1195 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1196 -|(% style="width:154px" %)AT+PWMOUT=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1197 -0,0,0(default)
1198 -
1199 -OK
1200 -)))
1201 -|(% style="width:154px" %)AT+PWMOUT=0,0,0|(% style="width:196px" %)The default is PWM input detection|(% style="width:157px" %)(((
1202 -OK
1203 -
1204 -)))
1205 -|(% style="width:154px" %)AT+PWMOUT=a,b,c|(% style="width:250px" %)(((
1206 -PWM output.
1207 -
1208 -a: Output time (unit: seconds)
1209 -
1210 -b: Output frequency (unit: HZ)
1211 -
1212 -c: Output duty cycle (unit: %)
1213 -)))|(% style="width:157px" %)(((
1214 -OK
1215 -)))
1216 -
1217 -
1218 -(% style="color:blue" %)**Downlink Command: 0x0C**
1219 -
1220 -
1221 -Format: Command Code (0x0C) followed by 1 bytes.
1222 -
1223 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1224 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1225 -
1226 -
1227 1227  = 4. Battery & Power Consumption =
1228 1228  
1229 1229  
... ... @@ -1242,13 +1242,14 @@
1242 1242  * Update with new features.
1243 1243  * Fix bugs.
1244 1244  
1245 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1080 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1246 1246  
1247 1247  **Methods to Update Firmware:**
1248 1248  
1249 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1250 -* Update through UART TTL interface**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1084 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1085 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1251 1251  
1087 +
1252 1252  = 6. FAQ =
1253 1253  
1254 1254  == 6.1 Where can i find source code of SN50v3-LB? ==
... ... @@ -1257,22 +1257,7 @@
1257 1257  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1258 1258  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1259 1259  
1260 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1261 1261  
1262 -
1263 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1264 -
1265 -
1266 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1267 -
1268 -
1269 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1270 -
1271 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1272 -
1273 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1274 -
1275 -
1276 1276  = 7. Order Info =
1277 1277  
1278 1278  
... ... @@ -1296,6 +1296,7 @@
1296 1296  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1297 1297  * (% style="color:red" %)**NH**(%%): No Hole
1298 1298  
1120 +
1299 1299  = 8. ​Packing Info =
1300 1300  
1301 1301  
... ... @@ -1310,6 +1310,7 @@
1310 1310  * Package Size / pcs : cm
1311 1311  * Weight / pcs : g
1312 1312  
1135 +
1313 1313  = 9. Support =
1314 1314  
1315 1315  
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0