Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 15 removed)
- image-20230610162852-1.png
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. ting1 +XWiki.Ellie - Content
-
... ... @@ -19,7 +19,7 @@ 19 19 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 ... ... @@ -27,6 +27,7 @@ 27 27 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 + 30 30 == 1.2 Features == 31 31 32 32 ... ... @@ -40,6 +40,7 @@ 40 40 * Downlink to change configure 41 41 * 8500mAh Battery for long term use 42 42 44 + 43 43 == 1.3 Specification == 44 44 45 45 ... ... @@ -77,6 +77,7 @@ 77 77 * Sleep Mode: 5uA @ 3.3v 78 78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 79 79 82 + 80 80 == 1.4 Sleep mode and working mode == 81 81 82 82 ... ... @@ -104,6 +104,7 @@ 104 104 ))) 105 105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 106 106 110 + 107 107 == 1.6 BLE connection == 108 108 109 109 ... ... @@ -122,7 +122,7 @@ 122 122 == 1.7 Pin Definitions == 123 123 124 124 125 -[[image:image-20230 610163213-1.png||height="404" width="699"]]129 +[[image:image-20230513102034-2.png]] 126 126 127 127 128 128 == 1.8 Mechanical == ... ... @@ -135,7 +135,7 @@ 135 135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 136 136 137 137 138 -== 1.9Hole Option ==142 +== Hole Option == 139 139 140 140 141 141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: ... ... @@ -150,7 +150,7 @@ 150 150 == 2.1 How it works == 151 151 152 152 153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S N50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.157 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 154 154 155 155 156 156 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -158,7 +158,7 @@ 158 158 159 159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 160 160 161 -The LPS8 v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.165 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 162 162 163 163 164 164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -207,7 +207,7 @@ 207 207 === 2.3.1 Device Status, FPORT~=5 === 208 208 209 209 210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 -LBto send device configure detail, include device configure status. SN50v3-LBwill uplink a payload via FPort=5 to server.214 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 211 211 212 212 The Payload format is as below. 213 213 ... ... @@ -215,44 +215,44 @@ 215 215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 216 216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 217 217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 218 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 222 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 219 219 220 220 Example parse in TTNv3 221 221 222 222 223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3 -LB, this value is 0x1C227 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 224 224 225 225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 226 226 227 227 (% style="color:#037691" %)**Frequency Band**: 228 228 229 -0x01: EU868 233 +*0x01: EU868 230 230 231 -0x02: US915 235 +*0x02: US915 232 232 233 -0x03: IN865 237 +*0x03: IN865 234 234 235 -0x04: AU915 239 +*0x04: AU915 236 236 237 -0x05: KZ865 241 +*0x05: KZ865 238 238 239 -0x06: RU864 243 +*0x06: RU864 240 240 241 -0x07: AS923 245 +*0x07: AS923 242 242 243 -0x08: AS923-1 247 +*0x08: AS923-1 244 244 245 -0x09: AS923-2 249 +*0x09: AS923-2 246 246 247 -0x0a: AS923-3 251 +*0x0a: AS923-3 248 248 249 -0x0b: CN470 253 +*0x0b: CN470 250 250 251 -0x0c: EU433 255 +*0x0c: EU433 252 252 253 -0x0d: KR920 257 +*0x0d: KR920 254 254 255 -0x0e: MA869 259 +*0x0e: MA869 256 256 257 257 258 258 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -276,22 +276,20 @@ 276 276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 277 277 278 278 279 -SN50v3 -LBhas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command(% style="color:blue" %)**AT+MOD**(%%)to set SN50v3-LBto different working modes.283 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 280 280 281 281 For example: 282 282 283 - (% style="color:blue" %)**AT+MOD=2 **(%%)287 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 284 284 285 285 286 286 (% style="color:red" %) **Important Notice:** 287 287 288 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 292 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 293 +1. All modes share the same Payload Explanation from HERE. 294 +1. By default, the device will send an uplink message every 20 minutes. 289 289 290 -2. All modes share the same Payload Explanation from HERE. 291 291 292 -3. By default, the device will send an uplink message every 20 minutes. 293 - 294 - 295 295 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 296 296 297 297 ... ... @@ -299,7 +299,7 @@ 299 299 300 300 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 301 301 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 302 -|Value|Bat|(% style="width:191px" %)((( 304 +|**Value**|Bat|(% style="width:191px" %)((( 303 303 Temperature(DS18B20)(PC13) 304 304 )))|(% style="width:78px" %)((( 305 305 ADC(PA4) ... ... @@ -314,6 +314,7 @@ 314 314 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 315 315 316 316 319 + 317 317 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 318 318 319 319 ... ... @@ -321,7 +321,7 @@ 321 321 322 322 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 323 323 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 324 -|Value|BAT|(% style="width:196px" %)((( 327 +|**Value**|BAT|(% style="width:196px" %)((( 325 325 Temperature(DS18B20)(PC13) 326 326 )))|(% style="width:87px" %)((( 327 327 ADC(PA4) ... ... @@ -328,8 +328,9 @@ 328 328 )))|(% style="width:189px" %)((( 329 329 Digital in(PB15) & Digital Interrupt(PA8) 330 330 )))|(% style="width:208px" %)((( 331 -Distance measure by: 1) LIDAR-Lite V3HP 332 -Or 2) Ultrasonic Sensor 334 +Distance measure by:1) LIDAR-Lite V3HP 335 +Or 336 +2) Ultrasonic Sensor 333 333 )))|(% style="width:117px" %)Reserved 334 334 335 335 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] ... ... @@ -351,7 +351,7 @@ 351 351 352 352 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 353 353 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 354 -|Value|BAT|(% style="width:183px" %)((( 358 +|**Value**|BAT|(% style="width:183px" %)((( 355 355 Temperature(DS18B20)(PC13) 356 356 )))|(% style="width:173px" %)((( 357 357 Digital in(PB15) & Digital Interrupt(PA8) ... ... @@ -359,7 +359,8 @@ 359 359 ADC(PA4) 360 360 )))|(% style="width:323px" %)((( 361 361 Distance measure by:1)TF-Mini plus LiDAR 362 -Or 2) TF-Luna LiDAR 366 +Or 367 +2) TF-Luna LiDAR 363 363 )))|(% style="width:188px" %)Distance signal strength 364 364 365 365 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] ... ... @@ -376,7 +376,7 @@ 376 376 377 377 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 378 378 379 -[[image:image-20230 610170047-1.png||height="452" width="799"]]384 +[[image:image-20230513105207-4.png||height="469" width="802"]] 380 380 381 381 382 382 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== ... ... @@ -388,7 +388,7 @@ 388 388 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 389 389 **Size(bytes)** 390 390 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 391 -|Value|(% style="width:68px" %)((( 396 +|**Value**|(% style="width:68px" %)((( 392 392 ADC1(PA4) 393 393 )))|(% style="width:75px" %)((( 394 394 ADC2(PA5) ... ... @@ -412,7 +412,7 @@ 412 412 413 413 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 414 414 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 415 -|Value|BAT|(% style="width:186px" %)((( 420 +|**Value**|BAT|(% style="width:186px" %)((( 416 416 Temperature1(DS18B20)(PC13) 417 417 )))|(% style="width:82px" %)((( 418 418 ADC(PA4) ... ... @@ -423,10 +423,10 @@ 423 423 424 424 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 425 425 426 - 427 427 [[image:image-20230513134006-1.png||height="559" width="736"]] 428 428 429 429 434 + 430 430 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 431 431 432 432 ... ... @@ -434,8 +434,8 @@ 434 434 435 435 Each HX711 need to be calibrated before used. User need to do below two steps: 436 436 437 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%)to calibrate to Zero gram.438 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%)to adjust the Calibration Factor.442 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 443 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 439 439 1. ((( 440 440 Weight has 4 bytes, the unit is g. 441 441 ... ... @@ -445,7 +445,7 @@ 445 445 446 446 For example: 447 447 448 - (% style="color:blue" %)**AT+GETSENSORVALUE =0**453 +**AT+GETSENSORVALUE =0** 449 449 450 450 Response: Weight is 401 g 451 451 ... ... @@ -455,7 +455,7 @@ 455 455 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 456 456 **Size(bytes)** 457 457 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 458 -|Value|BAT|(% style="width:193px" %)((( 463 +|**Value**|BAT|(% style="width:193px" %)((( 459 459 Temperature(DS18B20)(PC13) 460 460 )))|(% style="width:85px" %)((( 461 461 ADC(PA4) ... ... @@ -466,6 +466,7 @@ 466 466 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 467 467 468 468 474 + 469 469 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 470 470 471 471 ... ... @@ -480,7 +480,7 @@ 480 480 481 481 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 482 482 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 483 -|Value|BAT|(% style="width:256px" %)((( 489 +|**Value**|BAT|(% style="width:256px" %)((( 484 484 Temperature(DS18B20)(PC13) 485 485 )))|(% style="width:108px" %)((( 486 486 ADC(PA4) ... ... @@ -493,6 +493,7 @@ 493 493 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 494 494 495 495 502 + 496 496 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 497 497 498 498 ... ... @@ -500,7 +500,7 @@ 500 500 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 501 501 **Size(bytes)** 502 502 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 503 -|Value|BAT|(% style="width:188px" %)((( 510 +|**Value**|BAT|(% style="width:188px" %)((( 504 504 Temperature(DS18B20) 505 505 (PC13) 506 506 )))|(% style="width:83px" %)((( ... ... @@ -519,7 +519,7 @@ 519 519 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 520 520 **Size(bytes)** 521 521 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 522 -|Value|BAT|(% style="width:207px" %)((( 529 +|**Value**|BAT|(% style="width:207px" %)((( 523 523 Temperature(DS18B20) 524 524 (PC13) 525 525 )))|(% style="width:94px" %)((( ... ... @@ -542,7 +542,7 @@ 542 542 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 543 543 **Size(bytes)** 544 544 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 545 -|Value|BAT|((( 552 +|**Value**|BAT|((( 546 546 Temperature 547 547 (DS18B20)(PC13) 548 548 )))|((( ... ... @@ -578,86 +578,6 @@ 578 578 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 579 579 580 580 581 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 582 - 583 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 584 - 585 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 586 - 587 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 588 - 589 - 590 -===== 2.3.2.10.a Uplink, PWM input capture ===== 591 - 592 - 593 -[[image:image-20230817172209-2.png||height="439" width="683"]] 594 - 595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 596 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 597 -|Value|Bat|(% style="width:191px" %)((( 598 -Temperature(DS18B20)(PC13) 599 -)))|(% style="width:78px" %)((( 600 -ADC(PA4) 601 -)))|(% style="width:135px" %)((( 602 -PWM_Setting 603 - 604 -&Digital Interrupt(PA8) 605 -)))|(% style="width:70px" %)((( 606 -Pulse period 607 -)))|(% style="width:89px" %)((( 608 -Duration of high level 609 -))) 610 - 611 -[[image:image-20230817170702-1.png||height="161" width="1044"]] 612 - 613 - 614 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 615 - 616 -**Frequency:** 617 - 618 -(% class="MsoNormal" %) 619 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 620 - 621 -(% class="MsoNormal" %) 622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 623 - 624 - 625 -(% class="MsoNormal" %) 626 -**Duty cycle:** 627 - 628 -Duty cycle= Duration of high level/ Pulse period*100 ~(%). 629 - 630 -[[image:image-20230818092200-1.png||height="344" width="627"]] 631 - 632 -===== 2.3.2.10.b Uplink, PWM input capture ===== 633 - 634 - 635 - 636 - 637 - 638 - 639 - 640 -===== 2.3.2.10.c Downlink, PWM output ===== 641 - 642 - 643 -[[image:image-20230817173800-3.png||height="412" width="685"]] 644 - 645 -Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 646 - 647 - xx xx xx is the output frequency, the unit is HZ. 648 - 649 - yy is the duty cycle of the output, the unit is %. 650 - 651 - zz zz is the time delay of the output, the unit is ms. 652 - 653 - 654 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 655 - 656 -The oscilloscope displays as follows: 657 - 658 -[[image:image-20230817173858-5.png||height="694" width="921"]] 659 - 660 - 661 661 === 2.3.3 Decode payload === 662 662 663 663 ... ... @@ -667,13 +667,13 @@ 667 667 668 668 The payload decoder function for TTN V3 are here: 669 669 670 -SN50v3 -LBTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]597 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 671 671 672 672 673 673 ==== 2.3.3.1 Battery Info ==== 674 674 675 675 676 -Check the battery voltage for SN50v3 -LB.603 +Check the battery voltage for SN50v3. 677 677 678 678 Ex1: 0x0B45 = 2885mV 679 679 ... ... @@ -721,24 +721,19 @@ 721 721 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 722 722 723 723 724 -The measuring range of the ADC is only about 0 .1V to 1.1V The voltage resolution is about 0.24mv.651 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 725 725 726 -When the measured output voltage of the sensor is not within the range of 0 .1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.653 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 727 727 728 728 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 729 729 730 - 731 731 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 732 732 733 733 734 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 735 - 736 -[[image:image-20230811113449-1.png||height="370" width="608"]] 737 - 738 738 ==== 2.3.3.5 Digital Interrupt ==== 739 739 740 740 741 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 -LBwill send a packet to the server.663 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 742 742 743 743 (% style="color:blue" %)** Interrupt connection method:** 744 744 ... ... @@ -751,18 +751,18 @@ 751 751 752 752 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 753 753 754 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3 -LBinterrupt interface to detect the status for the door or window.676 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 755 755 756 756 757 757 (% style="color:blue" %)**Below is the installation example:** 758 758 759 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3 -LBas follows:681 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 760 760 761 761 * ((( 762 -One pin to SN50v3 -LB's PA8 pin684 +One pin to SN50_v3's PA8 pin 763 763 ))) 764 764 * ((( 765 -The other pin to SN50v3 -LB's VDD pin687 +The other pin to SN50_v3's VDD pin 766 766 ))) 767 767 768 768 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -779,7 +779,7 @@ 779 779 780 780 The command is: 781 781 782 -(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ 704 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 783 783 784 784 Below shows some screen captures in TTN V3: 785 785 ... ... @@ -786,7 +786,7 @@ 786 786 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 787 787 788 788 789 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:711 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 790 790 791 791 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 792 792 ... ... @@ -798,13 +798,12 @@ 798 798 799 799 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 800 800 801 - (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LBwill be a good reference.**723 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference. 802 802 803 - 804 804 Below is the connection to SHT20/ SHT31. The connection is as below: 805 805 806 -[[image:image-20230610170152-2.png||height="501" width="846"]] 807 807 728 +[[image:image-20230513103633-3.png||height="448" width="716"]] 808 808 809 809 The device will be able to get the I2C sensor data now and upload to IoT Server. 810 810 ... ... @@ -832,7 +832,7 @@ 832 832 833 833 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 834 834 835 -The SN50v3 -LBdetects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.756 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 836 836 837 837 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 838 838 ... ... @@ -841,7 +841,7 @@ 841 841 [[image:image-20230512173903-6.png||height="596" width="715"]] 842 842 843 843 844 -Connect to the SN50v3 -LBand run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).765 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 845 845 846 846 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 847 847 ... ... @@ -853,13 +853,13 @@ 853 853 ==== 2.3.3.9 Battery Output - BAT pin ==== 854 854 855 855 856 -The BAT pin of SN50v3 -LBis connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.777 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 857 857 858 858 859 859 ==== 2.3.3.10 +5V Output ==== 860 860 861 861 862 -SN50v3 -LBwill enable +5V output before all sampling and disable the +5v after all sampling.783 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 863 863 864 864 The 5V output time can be controlled by AT Command. 865 865 ... ... @@ -867,7 +867,7 @@ 867 867 868 868 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 869 869 870 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.791 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 871 871 872 872 873 873 ==== 2.3.3.11 BH1750 Illumination Sensor ==== ... ... @@ -881,40 +881,9 @@ 881 881 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 882 882 883 883 884 -==== 2.3.3.12 PWMMOD ====805 +==== 2.3.3.12 Working MOD ==== 885 885 886 886 887 -* ((( 888 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 889 -))) 890 -* ((( 891 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 892 -))) 893 - 894 - [[image:image-20230817183249-3.png||height="320" width="417"]] 895 - 896 -* ((( 897 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 898 -))) 899 -* ((( 900 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 901 -))) 902 -* ((( 903 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 904 - 905 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 906 - 907 -a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used. 908 - 909 -b) If the output duration is more than 30 seconds, better to use external power source. 910 - 911 - 912 - 913 -))) 914 - 915 -==== 2.3.3.13 Working MOD ==== 916 - 917 - 918 918 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 919 919 920 920 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -930,8 +930,8 @@ 930 930 * 6: MOD7 931 931 * 7: MOD8 932 932 * 8: MOD9 933 -* 9: MOD10 934 934 824 + 935 935 == 2.4 Payload Decoder file == 936 936 937 937 ... ... @@ -961,6 +961,7 @@ 961 961 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 962 962 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 963 963 854 + 964 964 == 3.2 General Commands == 965 965 966 966 ... ... @@ -977,7 +977,7 @@ 977 977 == 3.3 Commands special design for SN50v3-LB == 978 978 979 979 980 -These commands only valid for S N50v3-LB, as below:871 +These commands only valid for S31x-LB, as below: 981 981 982 982 983 983 === 3.3.1 Set Transmit Interval Time === ... ... @@ -988,7 +988,7 @@ 988 988 (% style="color:blue" %)**AT Command: AT+TDC** 989 989 990 990 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 991 -|=(% style="width: 156px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**882 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 992 992 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 993 993 30000 994 994 OK ... ... @@ -1008,14 +1008,15 @@ 1008 1008 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 1009 1009 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 1010 1010 902 + 1011 1011 === 3.3.2 Get Device Status === 1012 1012 1013 1013 1014 1014 Send a LoRaWAN downlink to ask the device to send its status. 1015 1015 1016 -(% style="color:blue" %)**Downlink Payload: 0x26 01 **908 +(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 1017 1017 1018 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.910 +Sensor will upload Device Status via FPORT=5. See payload section for detail. 1019 1019 1020 1020 1021 1021 === 3.3.3 Set Interrupt Mode === ... ... @@ -1026,7 +1026,7 @@ 1026 1026 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 1027 1027 1028 1028 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1029 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**921 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1030 1030 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1031 1031 0 1032 1032 OK ... ... @@ -1056,6 +1056,7 @@ 1056 1056 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 1057 1057 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 1058 1058 951 + 1059 1059 === 3.3.4 Set Power Output Duration === 1060 1060 1061 1061 ... ... @@ -1070,7 +1070,7 @@ 1070 1070 (% style="color:blue" %)**AT Command: AT+5VT** 1071 1071 1072 1072 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1073 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**966 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1074 1074 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1075 1075 500(default) 1076 1076 OK ... ... @@ -1088,6 +1088,7 @@ 1088 1088 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1089 1089 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1090 1090 984 + 1091 1091 === 3.3.5 Set Weighing parameters === 1092 1092 1093 1093 ... ... @@ -1096,7 +1096,7 @@ 1096 1096 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1097 1097 1098 1098 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1099 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**993 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1100 1100 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1101 1101 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1102 1102 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -1113,6 +1113,7 @@ 1113 1113 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1114 1114 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1115 1115 1010 + 1116 1116 === 3.3.6 Set Digital pulse count value === 1117 1117 1118 1118 ... ... @@ -1123,7 +1123,7 @@ 1123 1123 (% style="color:blue" %)**AT Command: AT+SETCNT** 1124 1124 1125 1125 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1126 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1021 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1127 1127 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1128 1128 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1129 1129 ... ... @@ -1136,6 +1136,7 @@ 1136 1136 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1137 1137 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1138 1138 1034 + 1139 1139 === 3.3.7 Set Workmode === 1140 1140 1141 1141 ... ... @@ -1144,7 +1144,7 @@ 1144 1144 (% style="color:blue" %)**AT Command: AT+MOD** 1145 1145 1146 1146 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1147 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1043 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1148 1148 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1149 1149 OK 1150 1150 ))) ... ... @@ -1160,70 +1160,7 @@ 1160 1160 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1161 1161 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1162 1162 1163 -=== 3.3.8 PWM setting === 1164 1164 1165 - 1166 -* Feature: Set the time acquisition unit for PWM input capture. 1167 - 1168 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1169 - 1170 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1171 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1172 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1173 -0(default) 1174 - 1175 -OK 1176 -))) 1177 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)((( 1178 -OK 1179 - 1180 -))) 1181 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK 1182 - 1183 -(% style="color:blue" %)**Downlink Command: 0x0C** 1184 - 1185 -Format: Command Code (0x0C) followed by 1 bytes. 1186 - 1187 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1188 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1189 - 1190 -* Feature: Set the time acquisition unit for PWM input capture. 1191 - 1192 -(% style="color:blue" %)**AT Command: AT+PWMOUT** 1193 - 1194 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:580px" %) 1195 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1196 -|(% style="width:154px" %)AT+PWMOUT=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1197 -0,0,0(default) 1198 - 1199 -OK 1200 -))) 1201 -|(% style="width:154px" %)AT+PWMOUT=0,0,0|(% style="width:196px" %)The default is PWM input detection|(% style="width:157px" %)((( 1202 -OK 1203 - 1204 -))) 1205 -|(% style="width:154px" %)AT+PWMOUT=a,b,c|(% style="width:250px" %)((( 1206 -PWM output. 1207 - 1208 -a: Output time (unit: seconds) 1209 - 1210 -b: Output frequency (unit: HZ) 1211 - 1212 -c: Output duty cycle (unit: %) 1213 -)))|(% style="width:157px" %)((( 1214 -OK 1215 -))) 1216 - 1217 - 1218 -(% style="color:blue" %)**Downlink Command: 0x0C** 1219 - 1220 - 1221 -Format: Command Code (0x0C) followed by 1 bytes. 1222 - 1223 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1224 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1225 - 1226 - 1227 1227 = 4. Battery & Power Consumption = 1228 1228 1229 1229 ... ... @@ -1236,19 +1236,21 @@ 1236 1236 1237 1237 1238 1238 (% class="wikigeneratedid" %) 1239 - **User can change firmware SN50v3-LB to:**1072 +User can change firmware SN50v3-LB to: 1240 1240 1241 1241 * Change Frequency band/ region. 1242 1242 * Update with new features. 1243 1243 * Fix bugs. 1244 1244 1245 - **Firmware and changelog can be downloaded from :****[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**1078 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1246 1246 1247 -**Methods to Update Firmware:** 1248 1248 1249 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1250 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1081 +Methods to Update Firmware: 1251 1251 1083 +* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1084 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1085 + 1086 + 1252 1252 = 6. FAQ = 1253 1253 1254 1254 == 6.1 Where can i find source code of SN50v3-LB? == ... ... @@ -1257,22 +1257,7 @@ 1257 1257 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1258 1258 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1259 1259 1260 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1261 1261 1262 - 1263 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1264 - 1265 - 1266 -== 6.3 How to put several sensors to a SN50v3-LB? == 1267 - 1268 - 1269 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1270 - 1271 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1272 - 1273 -[[image:image-20230810121434-1.png||height="242" width="656"]] 1274 - 1275 - 1276 1276 = 7. Order Info = 1277 1277 1278 1278 ... ... @@ -1296,6 +1296,7 @@ 1296 1296 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1297 1297 * (% style="color:red" %)**NH**(%%): No Hole 1298 1298 1119 + 1299 1299 = 8. Packing Info = 1300 1300 1301 1301 ... ... @@ -1310,6 +1310,7 @@ 1310 1310 * Package Size / pcs : cm 1311 1311 * Weight / pcs : g 1312 1312 1134 + 1313 1313 = 9. Support = 1314 1314 1315 1315
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.9 KB - Content