Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 6 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor Node User Manual 1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. ting1 +XWiki.Xiaoling - Content
-
... ... @@ -1,10 +1,15 @@ 1 + 2 + 1 1 (% style="text-align:center" %) 2 -[[image:image-202 30515135611-1.jpeg||height="589" width="589"]]4 +[[image:image-20240103095714-2.png]] 3 3 4 4 5 5 6 -**Table of Contents:** 7 7 9 + 10 + 11 +**Table of Contents:** 12 + 8 8 {{toc/}} 9 9 10 10 ... ... @@ -14,18 +14,18 @@ 14 14 15 15 = 1. Introduction = 16 16 17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node == 22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node == 18 18 19 19 20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%) or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 23 23 24 -(% style="color:blue" %)** SN50V3-LB **(%%)has a powerful48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors. 25 25 26 -(% style="color:blue" %)** SN50V3-LB**(%%) has abuilt-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining. 27 27 28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 30 == 1.2 Features == 31 31 ... ... @@ -38,7 +38,8 @@ 38 38 * Support wireless OTA update firmware 39 39 * Uplink on periodically 40 40 * Downlink to change configure 41 -* 8500mAh Battery for long term use 46 +* 8500mAh Li/SOCl2 battery (SN50v3-LB) 47 +* Solar panel + 3000mAh Li-on battery (SN50v3-LS) 42 42 43 43 == 1.3 Specification == 44 44 ... ... @@ -45,7 +45,7 @@ 45 45 46 46 (% style="color:#037691" %)**Common DC Characteristics:** 47 47 48 -* Supply Voltage: built in8500mAh Li-SOCI2battery , 2.5v ~~ 3.6v54 +* Supply Voltage: Built- in battery , 2.5v ~~ 3.6v 49 49 * Operating Temperature: -40 ~~ 85°C 50 50 51 51 (% style="color:#037691" %)**I/O Interface:** ... ... @@ -88,11 +88,11 @@ 88 88 == 1.5 Button & LEDs == 89 89 90 90 91 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 97 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]] 92 92 93 93 94 94 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 95 -|=(% style="width: 167px;background-color:# D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**101 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 96 96 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 97 97 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 98 98 Meanwhile, BLE module will be active and user can connect via BLE to configure device. ... ... @@ -107,7 +107,7 @@ 107 107 == 1.6 BLE connection == 108 108 109 109 110 -SN50v3-LB supports BLE remote configure. 116 +SN50v3-LB/LS supports BLE remote configure. 111 111 112 112 113 113 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: ... ... @@ -127,18 +127,23 @@ 127 127 128 128 == 1.8 Mechanical == 129 129 136 +=== 1.8.1 for LB version === 130 130 131 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 132 132 133 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 139 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 134 134 141 + 135 135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 136 136 144 +=== 1.8.2 for LS version === 137 137 146 +[[image:image-20231231203439-3.png||height="385" width="886"]] 147 + 148 + 138 138 == 1.9 Hole Option == 139 139 140 140 141 -SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 152 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 142 142 143 143 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] 144 144 ... ... @@ -145,12 +145,12 @@ 145 145 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]] 146 146 147 147 148 -= 2. Configure SN50v3-LB to connect to LoRaWAN network = 159 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network = 149 149 150 150 == 2.1 How it works == 151 151 152 152 153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 164 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 154 154 155 155 156 156 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -161,9 +161,9 @@ 161 161 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 162 162 163 163 164 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. 175 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS. 165 165 166 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below: 177 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below: 167 167 168 168 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]] 169 169 ... ... @@ -192,10 +192,10 @@ 192 192 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 193 193 194 194 195 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB 206 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS 196 196 197 197 198 -Press the button for 5 seconds to activate the SN50v3-LB. 209 +Press the button for 5 seconds to activate the SN50v3-LB/LS. 199 199 200 200 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 201 201 ... ... @@ -207,13 +207,13 @@ 207 207 === 2.3.1 Device Status, FPORT~=5 === 208 208 209 209 210 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 221 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server. 211 211 212 212 The Payload format is as below. 213 213 214 214 215 215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 216 -|(% colspan="6" style="background-color:# d9e2f3;#0070c0" %)**Device Status (FPORT=5)**227 +|(% colspan="6" style="background-color:#4F81BD;color:white" %)**Device Status (FPORT=5)** 217 217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 218 218 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 219 219 ... ... @@ -220,7 +220,7 @@ 220 220 Example parse in TTNv3 221 221 222 222 223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 234 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C 224 224 225 225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 226 226 ... ... @@ -276,7 +276,7 @@ 276 276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 277 277 278 278 279 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 290 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes. 280 280 281 281 For example: 282 282 ... ... @@ -285,7 +285,7 @@ 285 285 286 286 (% style="color:red" %) **Important Notice:** 287 287 288 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 299 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload. 289 289 290 290 2. All modes share the same Payload Explanation from HERE. 291 291 ... ... @@ -298,7 +298,7 @@ 298 298 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 299 299 300 300 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 301 -|(% style="background-color:# d9e2f3;#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3;#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3;#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:80px" %)**2**312 +|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:90px" %)**1**|(% style="background-color:#4F81BD;color:white; width:130px" %)**2**|(% style="background-color:#4F81BD;color:white; width:80px" %)**2** 302 302 |Value|Bat|(% style="width:191px" %)((( 303 303 Temperature(DS18B20)(PC13) 304 304 )))|(% style="width:78px" %)((( ... ... @@ -320,7 +320,7 @@ 320 320 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 321 321 322 322 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 323 -|(% style="background-color:# d9e2f3;#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3;#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3;#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:40px" %)**2**334 +|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:30px" %)**2**|(% style="background-color:#4F81BD;color:white; width:110px" %)**2**|(% style="background-color:#4F81BD;color:white; width:40px" %)**2**|(% style="background-color:#4F81BD;color:white; width:110px" %)**1**|(% style="background-color:#4F81BD;color:white; width:140px" %)**2**|(% style="background-color:#4F81BD;color:white; width:40px" %)**2** 324 324 |Value|BAT|(% style="width:196px" %)((( 325 325 Temperature(DS18B20)(PC13) 326 326 )))|(% style="width:87px" %)((( ... ... @@ -350,7 +350,7 @@ 350 350 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 351 351 352 352 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 353 -|(% style="background-color:# d9e2f3;#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3;#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3;#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:80px" %)**2**364 +|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**1**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:120px" %)**2**|(% style="background-color:#4F81BD;color:white; width:80px" %)**2** 354 354 |Value|BAT|(% style="width:183px" %)((( 355 355 Temperature(DS18B20)(PC13) 356 356 )))|(% style="width:173px" %)((( ... ... @@ -385,9 +385,9 @@ 385 385 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 386 386 387 387 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 388 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((399 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 389 389 **Size(bytes)** 390 -)))|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1401 +)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 100px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1 391 391 |Value|(% style="width:68px" %)((( 392 392 ADC1(PA4) 393 393 )))|(% style="width:75px" %)((( ... ... @@ -411,7 +411,7 @@ 411 411 This mode has total 11 bytes. As shown below: 412 412 413 413 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 414 -|(% style="background-color:# d9e2f3;#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3;#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3;#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:100px" %)**2**425 +|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**1**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2** 415 415 |Value|BAT|(% style="width:186px" %)((( 416 416 Temperature1(DS18B20)(PC13) 417 417 )))|(% style="width:82px" %)((( ... ... @@ -452,9 +452,9 @@ 452 452 Check the response of this command and adjust the value to match the real value for thing. 453 453 454 454 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 455 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((466 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 456 456 **Size(bytes)** 457 -)))|=(% style="width: 20px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**468 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4** 458 458 |Value|BAT|(% style="width:193px" %)((( 459 459 Temperature(DS18B20)(PC13) 460 460 )))|(% style="width:85px" %)((( ... ... @@ -479,7 +479,7 @@ 479 479 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 480 480 481 481 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 482 -|=(% style="width: 60px;background-color:# D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**493 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**4** 483 483 |Value|BAT|(% style="width:256px" %)((( 484 484 Temperature(DS18B20)(PC13) 485 485 )))|(% style="width:108px" %)((( ... ... @@ -497,9 +497,9 @@ 497 497 498 498 499 499 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 500 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((511 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 501 501 **Size(bytes)** 502 -)))|=(% style="width: 20px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2513 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2 503 503 |Value|BAT|(% style="width:188px" %)((( 504 504 Temperature(DS18B20) 505 505 (PC13) ... ... @@ -516,9 +516,9 @@ 516 516 517 517 518 518 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 519 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((530 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 520 520 **Size(bytes)** 521 -)))|=(% style="width: 30px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2532 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 120px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)2 522 522 |Value|BAT|(% style="width:207px" %)((( 523 523 Temperature(DS18B20) 524 524 (PC13) ... ... @@ -539,9 +539,9 @@ 539 539 540 540 541 541 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 542 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((553 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 543 543 **Size(bytes)** 544 -)))|=(% style="width: 20px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4555 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4 545 545 |Value|BAT|((( 546 546 Temperature 547 547 (DS18B20)(PC13) ... ... @@ -578,8 +578,9 @@ 578 578 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 579 579 580 580 581 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 592 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ==== 582 582 594 + 583 583 (% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 584 584 585 585 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. ... ... @@ -592,8 +592,8 @@ 592 592 593 593 [[image:image-20230817172209-2.png||height="439" width="683"]] 594 594 595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width: 690px" %)596 -|(% style="background-color:# d9e2f3;#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3;#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3;#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:89px" %)**2**607 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 608 +|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:135px" %)**1**|(% style="background-color:#4F81BD;color:white; width:70px" %)**2**|(% style="background-color:#4F81BD;color:white; width:90px" %)**2** 597 597 |Value|Bat|(% style="width:191px" %)((( 598 598 Temperature(DS18B20)(PC13) 599 599 )))|(% style="width:78px" %)((( ... ... @@ -600,7 +600,6 @@ 600 600 ADC(PA4) 601 601 )))|(% style="width:135px" %)((( 602 602 PWM_Setting 603 - 604 604 &Digital Interrupt(PA8) 605 605 )))|(% style="width:70px" %)((( 606 606 Pulse period ... ... @@ -629,14 +629,36 @@ 629 629 630 630 [[image:image-20230818092200-1.png||height="344" width="627"]] 631 631 632 -===== 2.3.2.10.b Uplink, PWM input capture ===== 633 633 644 +===== 2.3.2.10.b Uplink, PWM output ===== 634 634 635 635 647 +[[image:image-20230817172209-2.png||height="439" width="683"]] 636 636 649 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 637 637 651 +a is the time delay of the output, the unit is ms. 638 638 653 +b is the output frequency, the unit is HZ. 639 639 655 +c is the duty cycle of the output, the unit is %. 656 + 657 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 658 + 659 +aa is the time delay of the output, the unit is ms. 660 + 661 +bb is the output frequency, the unit is HZ. 662 + 663 +cc is the duty cycle of the output, the unit is %. 664 + 665 + 666 +For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 667 + 668 +The oscilloscope displays as follows: 669 + 670 +[[image:image-20231213102404-1.jpeg||height="688" width="821"]] 671 + 672 + 640 640 ===== 2.3.2.10.c Downlink, PWM output ===== 641 641 642 642 ... ... @@ -655,7 +655,7 @@ 655 655 656 656 The oscilloscope displays as follows: 657 657 658 -[[image:image-20230817173858-5.png||height="6 94" width="921"]]691 +[[image:image-20230817173858-5.png||height="634" width="843"]] 659 659 660 660 661 661 === 2.3.3 Decode payload === ... ... @@ -667,13 +667,13 @@ 667 667 668 668 The payload decoder function for TTN V3 are here: 669 669 670 -SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 703 +SN50v3-LB/LS TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 671 671 672 672 673 673 ==== 2.3.3.1 Battery Info ==== 674 674 675 675 676 -Check the battery voltage for SN50v3-LB. 709 +Check the battery voltage for SN50v3-LB/LS. 677 677 678 678 Ex1: 0x0B45 = 2885mV 679 679 ... ... @@ -735,10 +735,12 @@ 735 735 736 736 [[image:image-20230811113449-1.png||height="370" width="608"]] 737 737 771 + 772 + 738 738 ==== 2.3.3.5 Digital Interrupt ==== 739 739 740 740 741 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 776 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server. 742 742 743 743 (% style="color:blue" %)** Interrupt connection method:** 744 744 ... ... @@ -751,18 +751,18 @@ 751 751 752 752 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 753 753 754 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 789 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window. 755 755 756 756 757 757 (% style="color:blue" %)**Below is the installation example:** 758 758 759 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 794 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows: 760 760 761 761 * ((( 762 -One pin to SN50v3-LB's PA8 pin 797 +One pin to SN50v3-LB/LS's PA8 pin 763 763 ))) 764 764 * ((( 765 -The other pin to SN50v3-LB's VDD pin 800 +The other pin to SN50v3-LB/LS's VDD pin 766 766 ))) 767 767 768 768 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -798,7 +798,7 @@ 798 798 799 799 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 800 800 801 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 836 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.** 802 802 803 803 804 804 Below is the connection to SHT20/ SHT31. The connection is as below: ... ... @@ -832,7 +832,7 @@ 832 832 833 833 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 834 834 835 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 870 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 836 836 837 837 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 838 838 ... ... @@ -841,7 +841,7 @@ 841 841 [[image:image-20230512173903-6.png||height="596" width="715"]] 842 842 843 843 844 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 879 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 845 845 846 846 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 847 847 ... ... @@ -853,13 +853,13 @@ 853 853 ==== 2.3.3.9 Battery Output - BAT pin ==== 854 854 855 855 856 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 891 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon. 857 857 858 858 859 859 ==== 2.3.3.10 +5V Output ==== 860 860 861 861 862 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 897 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 863 863 864 864 The 5V output time can be controlled by AT Command. 865 865 ... ... @@ -900,18 +900,16 @@ 900 900 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 901 901 ))) 902 902 * ((( 903 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to Class C. Power consumption will not be low.938 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 904 904 905 905 For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 906 906 907 -a) If needs torealtime control output, SN50v3-LBhasbe run inCLass C andhaveto useexternal power source.942 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used. 908 908 909 -b) If the output duration is more than 30 seconds, bettert to use external power source. 910 - 911 - 912 - 944 +b) If the output duration is more than 30 seconds, better to use external power source. 913 913 ))) 914 914 947 + 915 915 ==== 2.3.3.13 Working MOD ==== 916 916 917 917 ... ... @@ -945,17 +945,17 @@ 945 945 == 2.5 Frequency Plans == 946 946 947 947 948 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 981 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 949 949 950 950 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 951 951 952 952 953 -= 3. Configure SN50v3-LB = 986 += 3. Configure SN50v3-LB/LS = 954 954 955 955 == 3.1 Configure Methods == 956 956 957 957 958 -SN50v3-LB supports below configure method: 991 +SN50v3-LB/LS supports below configure method: 959 959 960 960 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 961 961 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. ... ... @@ -974,10 +974,10 @@ 974 974 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 975 975 976 976 977 -== 3.3 Commands special design for SN50v3-LB == 1010 +== 3.3 Commands special design for SN50v3-LB/LS == 978 978 979 979 980 -These commands only valid for SN50v3-LB, as below: 1013 +These commands only valid for SN50v3-LB/LS, as below: 981 981 982 982 983 983 === 3.3.1 Set Transmit Interval Time === ... ... @@ -988,7 +988,7 @@ 988 988 (% style="color:blue" %)**AT Command: AT+TDC** 989 989 990 990 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 991 -|=(% style="width: 156px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**1024 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response** 992 992 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 993 993 30000 994 994 OK ... ... @@ -1023,10 +1023,10 @@ 1023 1023 1024 1024 Feature, Set Interrupt mode for GPIO_EXIT. 1025 1025 1026 -(% style="color:blue" %)**AT Command: AT+INTMOD1 ,AT+INTMOD2,AT+INTMOD3**1059 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 1027 1027 1028 1028 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1029 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1062 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1030 1030 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1031 1031 0 1032 1032 OK ... ... @@ -1070,7 +1070,7 @@ 1070 1070 (% style="color:blue" %)**AT Command: AT+5VT** 1071 1071 1072 1072 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1073 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1106 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1074 1074 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1075 1075 500(default) 1076 1076 OK ... ... @@ -1096,9 +1096,9 @@ 1096 1096 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1097 1097 1098 1098 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1099 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1132 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1100 1100 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1101 -|(% style="width:154px" %)AT+WEIGAP= ?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)1134 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1102 1102 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 1103 1103 1104 1104 (% style="color:blue" %)**Downlink Command: 0x08** ... ... @@ -1123,7 +1123,7 @@ 1123 1123 (% style="color:blue" %)**AT Command: AT+SETCNT** 1124 1124 1125 1125 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1126 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1159 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1127 1127 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1128 1128 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1129 1129 ... ... @@ -1144,7 +1144,7 @@ 1144 1144 (% style="color:blue" %)**AT Command: AT+MOD** 1145 1145 1146 1146 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1147 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1180 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1148 1148 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1149 1149 OK 1150 1150 ))) ... ... @@ -1160,25 +1160,25 @@ 1160 1160 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1161 1161 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1162 1162 1196 + 1163 1163 === 3.3.8 PWM setting === 1164 1164 1165 1165 1166 -Feature: Set the time acquisition unit for PWM input capture. 1200 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture. 1167 1167 1168 1168 (% style="color:blue" %)**AT Command: AT+PWMSET** 1169 1169 1170 1170 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1171 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width:197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1172 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width: 196px" %)0|(% style="width:157px" %)(((1205 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response** 1206 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1173 1173 0(default) 1174 - 1175 1175 OK 1176 1176 ))) 1177 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width: 196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)(((1210 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1178 1178 OK 1179 1179 1180 1180 ))) 1181 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width: 196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK1214 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1182 1182 1183 1183 (% style="color:blue" %)**Downlink Command: 0x0C** 1184 1184 ... ... @@ -1187,16 +1187,75 @@ 1187 1187 * Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1188 1188 * Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1189 1189 1223 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle. 1190 1190 1225 +(% style="color:blue" %)**AT Command: AT+PWMOUT** 1191 1191 1227 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1228 +|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 135px; background-color: #4F81BD;color:white" %)**Response** 1229 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1230 +0,0,0(default) 1192 1192 1232 +OK 1233 +))) 1234 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1235 +OK 1236 + 1237 +))) 1238 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1239 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1193 1193 1241 + 1242 +)))|(% style="width:137px" %)((( 1243 +OK 1244 +))) 1194 1194 1195 -= 4. Battery & Power Consumption = 1246 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1247 +|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters** 1248 +|(% colspan="1" rowspan="3" style="width:155px" %)((( 1249 +AT+PWMOUT=a,b,c 1196 1196 1251 + 1252 +)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1253 +Set PWM output time, output frequency and output duty cycle. 1197 1197 1198 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1255 +((( 1256 + 1257 +))) 1199 1199 1259 +((( 1260 + 1261 +))) 1262 +)))|(% style="width:242px" %)((( 1263 +a: Output time (unit: seconds) 1264 + 1265 +The value ranges from 0 to 65535. 1266 + 1267 +When a=65535, PWM will always output. 1268 +))) 1269 +|(% style="width:242px" %)((( 1270 +b: Output frequency (unit: HZ) 1271 +))) 1272 +|(% style="width:242px" %)((( 1273 +c: Output duty cycle (unit: %) 1274 + 1275 +The value ranges from 0 to 100. 1276 +))) 1277 + 1278 +(% style="color:blue" %)**Downlink Command: 0x0B01** 1279 + 1280 +Format: Command Code (0x0B01) followed by 6 bytes. 1281 + 1282 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1283 + 1284 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1285 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1286 + 1287 += 4. Battery & Power Cons = 1288 + 1289 + 1290 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace. 1291 + 1200 1200 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 1201 1201 1202 1202 ... ... @@ -1204,7 +1204,7 @@ 1204 1204 1205 1205 1206 1206 (% class="wikigeneratedid" %) 1207 -**User can change firmware SN50v3-LB to:** 1299 +**User can change firmware SN50v3-LB/LS to:** 1208 1208 1209 1209 * Change Frequency band/ region. 1210 1210 * Update with new features. ... ... @@ -1219,22 +1219,22 @@ 1219 1219 1220 1220 = 6. FAQ = 1221 1221 1222 -== 6.1 Where can i find source code of SN50v3-LB? == 1314 +== 6.1 Where can i find source code of SN50v3-LB/LS? == 1223 1223 1224 1224 1225 1225 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1226 1226 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1227 1227 1228 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1320 +== 6.2 How to generate PWM Output in SN50v3-LB/LS? == 1229 1229 1230 1230 1231 1231 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1232 1232 1233 1233 1234 -== 6.3 How to put several sensors to a SN50v3-LB? == 1326 +== 6.3 How to put several sensors to a SN50v3-LB/LS? == 1235 1235 1236 1236 1237 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1329 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1238 1238 1239 1239 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1240 1240 ... ... @@ -1244,7 +1244,7 @@ 1244 1244 = 7. Order Info = 1245 1245 1246 1246 1247 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** 1339 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY** 1248 1248 1249 1249 (% style="color:red" %)**XX**(%%): The default frequency band 1250 1250 ... ... @@ -1269,7 +1269,7 @@ 1269 1269 1270 1270 (% style="color:#037691" %)**Package Includes**: 1271 1271 1272 -* SN50v3-LB LoRaWAN Generic Node 1364 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node 1273 1273 1274 1274 (% style="color:#037691" %)**Dimension and weight**: 1275 1275
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +35.4 KB - Content
- image-20231231203439-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.6 KB - Content
- image-20240103095513-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +577.4 KB - Content
- image-20240103095714-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +230.1 KB - Content