<
From version < 75.1 >
edited by Mengting Qiu
on 2023/12/12 16:50
To version < 64.1 >
edited by Saxer Lin
on 2023/08/17 17:38
>
Change comment: Uploaded new attachment "image-20230817173858-5.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Saxer
Content
... ... @@ -19,7 +19,7 @@
19 19  
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
... ... @@ -27,6 +27,7 @@
27 27  
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 +
30 30  == 1.2 ​Features ==
31 31  
32 32  
... ... @@ -40,6 +40,8 @@
40 40  * Downlink to change configure
41 41  * 8500mAh Battery for long term use
42 42  
44 +
45 +
43 43  == 1.3 Specification ==
44 44  
45 45  
... ... @@ -77,6 +77,8 @@
77 77  * Sleep Mode: 5uA @ 3.3v
78 78  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79 79  
83 +
84 +
80 80  == 1.4 Sleep mode and working mode ==
81 81  
82 82  
... ... @@ -104,6 +104,8 @@
104 104  )))
105 105  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106 106  
112 +
113 +
107 107  == 1.6 BLE connection ==
108 108  
109 109  
... ... @@ -578,86 +578,6 @@
578 578  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
579 579  
580 580  
581 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
582 -
583 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
584 -
585 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
586 -
587 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
588 -
589 -
590 -===== 2.3.2.10.a  Uplink, PWM input capture =====
591 -
592 -
593 -[[image:image-20230817172209-2.png||height="439" width="683"]]
594 -
595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
596 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
597 -|Value|Bat|(% style="width:191px" %)(((
598 -Temperature(DS18B20)(PC13)
599 -)))|(% style="width:78px" %)(((
600 -ADC(PA4)
601 -)))|(% style="width:135px" %)(((
602 -PWM_Setting
603 -
604 -&Digital Interrupt(PA8)
605 -)))|(% style="width:70px" %)(((
606 -Pulse period
607 -)))|(% style="width:89px" %)(((
608 -Duration of high level
609 -)))
610 -
611 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
612 -
613 -
614 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
615 -
616 -**Frequency:**
617 -
618 -(% class="MsoNormal" %)
619 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
620 -
621 -(% class="MsoNormal" %)
622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
623 -
624 -
625 -(% class="MsoNormal" %)
626 -**Duty cycle:**
627 -
628 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
629 -
630 -[[image:image-20230818092200-1.png||height="344" width="627"]]
631 -
632 -===== 2.3.2.10.b  Uplink, PWM input capture =====
633 -
634 -
635 -
636 -
637 -
638 -
639 -
640 -===== 2.3.2.10.c  Downlink, PWM output =====
641 -
642 -
643 -[[image:image-20230817173800-3.png||height="412" width="685"]]
644 -
645 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
646 -
647 - xx xx xx is the output frequency, the unit is HZ.
648 -
649 - yy is the duty cycle of the output, the unit is %.
650 -
651 - zz zz is the time delay of the output, the unit is ms.
652 -
653 -
654 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
655 -
656 -The oscilloscope displays as follows:
657 -
658 -[[image:image-20230817173858-5.png||height="694" width="921"]]
659 -
660 -
661 661  === 2.3.3  ​Decode payload ===
662 662  
663 663  
... ... @@ -881,40 +881,9 @@
881 881  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
882 882  
883 883  
884 -==== 2.3.3.12  PWM MOD ====
811 +==== 2.3.3.12  Working MOD ====
885 885  
886 886  
887 -* (((
888 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
889 -)))
890 -* (((
891 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
892 -)))
893 -
894 - [[image:image-20230817183249-3.png||height="320" width="417"]]
895 -
896 -* (((
897 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
898 -)))
899 -* (((
900 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
901 -)))
902 -* (((
903 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to Class C. Power consumption will not be low.
904 -
905 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
906 -
907 -a) If needs to realtime control output, SN50v3-LB has be run in CLass C and have to use external power source.
908 -
909 -b) If the output duration is more than 30 seconds, bettert to use external power source. 
910 -
911 -
912 -
913 -)))
914 -
915 -==== 2.3.3.13  Working MOD ====
916 -
917 -
918 918  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
919 919  
920 920  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -930,8 +930,9 @@
930 930  * 6: MOD7
931 931  * 7: MOD8
932 932  * 8: MOD9
933 -* 9: MOD10
934 934  
830 +
831 +
935 935  == 2.4 Payload Decoder file ==
936 936  
937 937  
... ... @@ -961,6 +961,8 @@
961 961  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
962 962  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
963 963  
861 +
862 +
964 964  == 3.2 General Commands ==
965 965  
966 966  
... ... @@ -1008,6 +1008,8 @@
1008 1008  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1009 1009  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1010 1010  
910 +
911 +
1011 1011  === 3.3.2 Get Device Status ===
1012 1012  
1013 1013  
... ... @@ -1056,6 +1056,8 @@
1056 1056  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1057 1057  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1058 1058  
960 +
961 +
1059 1059  === 3.3.4 Set Power Output Duration ===
1060 1060  
1061 1061  
... ... @@ -1088,6 +1088,8 @@
1088 1088  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1089 1089  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1090 1090  
994 +
995 +
1091 1091  === 3.3.5 Set Weighing parameters ===
1092 1092  
1093 1093  
... ... @@ -1113,6 +1113,8 @@
1113 1113  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1114 1114  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1115 1115  
1021 +
1022 +
1116 1116  === 3.3.6 Set Digital pulse count value ===
1117 1117  
1118 1118  
... ... @@ -1136,6 +1136,8 @@
1136 1136  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1137 1137  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1138 1138  
1046 +
1047 +
1139 1139  === 3.3.7 Set Workmode ===
1140 1140  
1141 1141  
... ... @@ -1160,38 +1160,8 @@
1160 1160  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1161 1161  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1162 1162  
1163 -=== 3.3.8 PWM setting ===
1164 1164  
1165 1165  
1166 -Feature: Set the time acquisition unit for PWM input capture.
1167 -
1168 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1169 -
1170 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1171 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1172 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1173 -0(default)
1174 -
1175 -OK
1176 -)))
1177 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1178 -OK
1179 -
1180 -)))
1181 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1182 -
1183 -(% style="color:blue" %)**Downlink Command: 0x0C**
1184 -
1185 -Format: Command Code (0x0C) followed by 1 bytes.
1186 -
1187 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1188 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1189 -
1190 -
1191 -
1192 -
1193 -
1194 -
1195 1195  = 4. Battery & Power Consumption =
1196 1196  
1197 1197  
... ... @@ -1217,6 +1217,8 @@
1217 1217  * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1218 1218  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1219 1219  
1099 +
1100 +
1220 1220  = 6. FAQ =
1221 1221  
1222 1222  == 6.1 Where can i find source code of SN50v3-LB? ==
... ... @@ -1225,6 +1225,8 @@
1225 1225  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1226 1226  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1227 1227  
1109 +
1110 +
1228 1228  == 6.2 How to generate PWM Output in SN50v3-LB? ==
1229 1229  
1230 1230  
... ... @@ -1264,6 +1264,8 @@
1264 1264  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1265 1265  * (% style="color:red" %)**NH**(%%): No Hole
1266 1266  
1150 +
1151 +
1267 1267  = 8. ​Packing Info =
1268 1268  
1269 1269  
... ... @@ -1278,6 +1278,8 @@
1278 1278  * Package Size / pcs : cm
1279 1279  * Weight / pcs : g
1280 1280  
1166 +
1167 +
1281 1281  = 9. Support =
1282 1282  
1283 1283  
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0