Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
Uploaded new attachment "image-20230512180718-8.png", version {1}
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 27 removed)
- image-20230512181814-9.png
- image-20230513084523-1.png
- image-20230513102034-2.png
- image-20230513103633-3.png
- image-20230513105207-4.png
- image-20230513105351-5.png
- image-20230513110214-6.png
- image-20230513111203-7.png
- image-20230513111231-8.png
- image-20230513111255-9.png
- image-20230513134006-1.png
- image-20230515135611-1.jpeg
- image-20230610162852-1.png
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor NodeUser Manual1 +SN50v3-LB User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. ting1 +XWiki.Saxer - Content
-
... ... @@ -1,5 +1,4 @@ 1 -(% style="text-align:center" %) 2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 1 +[[image:image-20230511201248-1.png||height="403" width="489"]] 3 3 4 4 5 5 ... ... @@ -16,20 +16,23 @@ 16 16 17 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 18 18 19 - 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 23 23 21 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 22 + 23 + 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 26 + 26 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 27 27 29 + 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 32 + 30 30 == 1.2 Features == 31 31 32 - 33 33 * LoRaWAN 1.0.3 Class A 34 34 * Ultra-low power consumption 35 35 * Open-Source hardware/software ... ... @@ -42,7 +42,6 @@ 42 42 43 43 == 1.3 Specification == 44 44 45 - 46 46 (% style="color:#037691" %)**Common DC Characteristics:** 47 47 48 48 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -79,7 +79,6 @@ 79 79 80 80 == 1.4 Sleep mode and working mode == 81 81 82 - 83 83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 84 84 85 85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -122,7 +122,7 @@ 122 122 == 1.7 Pin Definitions == 123 123 124 124 125 -[[image:image-20230 610163213-1.png||height="404" width="699"]]125 +[[image:image-20230511203450-2.png||height="443" width="785"]] 126 126 127 127 128 128 == 1.8 Mechanical == ... ... @@ -135,9 +135,8 @@ 135 135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 136 136 137 137 138 -== 1.9Hole Option ==138 +== Hole Option == 139 139 140 - 141 141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 142 142 143 143 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -150,7 +150,7 @@ 150 150 == 2.1 How it works == 151 151 152 152 153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S N50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 154 154 155 155 156 156 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -158,7 +158,7 @@ 158 158 159 159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 160 160 161 -The LPS8 v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 162 162 163 163 164 164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -207,7 +207,7 @@ 207 207 === 2.3.1 Device Status, FPORT~=5 === 208 208 209 209 210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 -LBto send device configure detail, include device configure status. SN50v3-LBwill uplink a payload via FPort=5 to server.209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 211 211 212 212 The Payload format is as below. 213 213 ... ... @@ -215,44 +215,44 @@ 215 215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 216 216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 217 217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 218 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 219 219 220 220 Example parse in TTNv3 221 221 222 222 223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3 -LB, this value is 0x1C222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 224 224 225 225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 226 226 227 227 (% style="color:#037691" %)**Frequency Band**: 228 228 229 -0x01: EU868 228 +*0x01: EU868 230 230 231 -0x02: US915 230 +*0x02: US915 232 232 233 -0x03: IN865 232 +*0x03: IN865 234 234 235 -0x04: AU915 234 +*0x04: AU915 236 236 237 -0x05: KZ865 236 +*0x05: KZ865 238 238 239 -0x06: RU864 238 +*0x06: RU864 240 240 241 -0x07: AS923 240 +*0x07: AS923 242 242 243 -0x08: AS923-1 242 +*0x08: AS923-1 244 244 245 -0x09: AS923-2 244 +*0x09: AS923-2 246 246 247 -0x0a: AS923-3 246 +*0x0a: AS923-3 248 248 249 -0x0b: CN470 248 +*0x0b: CN470 250 250 251 -0x0c: EU433 250 +*0x0c: EU433 252 252 253 -0x0d: KR920 252 +*0x0d: KR920 254 254 255 -0x0e: MA869 254 +*0x0e: MA869 256 256 257 257 258 258 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -276,40 +276,25 @@ 276 276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 277 277 278 278 279 -SN50v3 -LBhas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command(% style="color:blue" %)**AT+MOD**(%%)to set SN50v3-LBto different working modes.278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 280 280 281 281 For example: 282 282 283 - (% style="color:blue" %)**AT+MOD=2 **(%%)282 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 284 284 285 285 286 286 (% style="color:red" %) **Important Notice:** 287 287 288 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 288 +1. All modes share the same Payload Explanation from HERE. 289 +1. By default, the device will send an uplink message every 20 minutes. 289 289 290 -2. All modes share the same Payload Explanation from HERE. 291 - 292 -3. By default, the device will send an uplink message every 20 minutes. 293 - 294 - 295 295 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 296 296 297 - 298 298 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 299 299 300 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 301 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 302 -|Value|Bat|(% style="width:191px" %)((( 303 -Temperature(DS18B20)(PC13) 304 -)))|(% style="width:78px" %)((( 305 -ADC(PA4) 306 -)))|(% style="width:216px" %)((( 307 -Digital in(PB15)&Digital Interrupt(PA8) 308 -)))|(% style="width:308px" %)((( 309 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 310 -)))|(% style="width:154px" %)((( 311 -Humidity(SHT20 or SHT31) 312 -))) 295 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 296 +|**Value**|Bat|Temperature(DS18B20)|ADC|Digital in & Digital Interrupt|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|Humidity(SHT20) 313 313 314 314 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 315 315 ... ... @@ -316,152 +316,128 @@ 316 316 317 317 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 318 318 319 - 320 320 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 321 321 322 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 323 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 324 -|Value|BAT|(% style="width:196px" %)((( 325 -Temperature(DS18B20)(PC13) 326 -)))|(% style="width:87px" %)((( 327 -ADC(PA4) 328 -)))|(% style="width:189px" %)((( 329 -Digital in(PB15) & Digital Interrupt(PA8) 330 -)))|(% style="width:208px" %)((( 331 -Distance measure by: 1) LIDAR-Lite V3HP 332 -Or 2) Ultrasonic Sensor 333 -)))|(% style="width:117px" %)Reserved 305 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 306 +|**Value**|BAT|((( 307 +Temperature(DS18B20) 308 +)))|ADC|Digital in & Digital Interrupt|((( 309 +Distance measure by: 310 +1) LIDAR-Lite V3HP 311 +Or 312 +2) Ultrasonic Sensor 313 +)))|Reserved 334 334 335 335 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 336 336 317 +**Connection of LIDAR-Lite V3HP:** 337 337 338 - (% style="color:blue"%)**ConnectionfLIDAR-LiteV3HP:**319 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324581381-162.png?rev=1.1||alt="1656324581381-162.png"]] 339 339 340 - [[image:image-20230512173758-5.png||height="563"width="712"]]321 +**Connection to Ultrasonic Sensor:** 341 341 323 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324598488-204.png?rev=1.1||alt="1656324598488-204.png"]] 342 342 343 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 344 - 345 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 346 - 347 -[[image:image-20230512173903-6.png||height="596" width="715"]] 348 - 349 - 350 350 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 351 351 352 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 353 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 354 -|Value|BAT|(% style="width:183px" %)((( 355 -Temperature(DS18B20)(PC13) 356 -)))|(% style="width:173px" %)((( 357 -Digital in(PB15) & Digital Interrupt(PA8) 358 -)))|(% style="width:84px" %)((( 359 -ADC(PA4) 360 -)))|(% style="width:323px" %)((( 327 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2** 328 +|**Value**|BAT|((( 329 +Temperature(DS18B20) 330 +)))|Digital in & Digital Interrupt|ADC|((( 361 361 Distance measure by:1)TF-Mini plus LiDAR 362 -Or 2) TF-Luna LiDAR 363 -)))|(% style="width:188px" %)Distance signal strength 332 +Or 333 +2) TF-Luna LiDAR 334 +)))|Distance signal strength 364 364 365 365 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 366 366 367 - 368 368 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 369 369 370 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwisetherewill be 400uA standby current.**340 +Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0 371 371 372 -[[image:i mage-20230512180609-7.png||height="555"width="802"]]342 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376795715-436.png?rev=1.1||alt="1656376795715-436.png"]] 373 373 374 - 375 375 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 376 376 377 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwisetherewill be 400uA standby current.**346 +Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0 378 378 379 -[[image:i mage-20230610170047-1.png||height="452" width="799"]]348 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]] 380 380 350 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption. 381 381 352 + 382 382 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 383 383 384 - 385 385 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 386 386 387 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 388 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 357 +|=((( 389 389 **Size(bytes)** 390 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 391 -|Value|(% style="width:68px" %)((( 392 -ADC1(PA4) 393 -)))|(% style="width:75px" %)((( 394 -ADC2(PA5) 395 -)))|((( 396 -ADC3(PA8) 397 -)))|((( 398 -Digital Interrupt(PB15) 399 -)))|(% style="width:304px" %)((( 400 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 401 -)))|(% style="width:163px" %)((( 402 -Humidity(SHT20 or SHT31) 403 -)))|(% style="width:53px" %)Bat 359 +)))|=**2**|=**2**|=**2**|=**1**|=2|=2|=1 360 +|**Value**|ADC(Pin PA0)|ADC2(PA1)|ADC3 (PA4)|((( 361 +Digital in(PA12)&Digital Interrupt1(PB14) 362 +)))|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|Humidity(SHT20 or SHT31)|Bat 404 404 405 -[[image:i mage-20230513110214-6.png]]364 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]] 406 406 407 407 408 408 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ==== 409 409 369 +This mode is supported in firmware version since v1.6.1. Software set to AT+MOD=4 410 410 411 - This modehas total11 bytes.Asshownbelow:371 +Hardware connection is as below, 412 412 413 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 414 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 415 -|Value|BAT|(% style="width:186px" %)((( 416 -Temperature1(DS18B20)(PC13) 417 -)))|(% style="width:82px" %)((( 418 -ADC(PA4) 419 -)))|(% style="width:210px" %)((( 420 -Digital in(PB15) & Digital Interrupt(PA8) 421 -)))|(% style="width:191px" %)Temperature2(DS18B20) 422 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 373 +**( Note:** 423 423 424 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 375 +* In hardware version v1.x and v2.0 , R3 & R4 should change from 10k to 4.7k ohm to support the other 2 x DS18B20 probes. 376 +* In hardware version v2.1 no need to change R3 , R4, by default, they are 4.7k ohm already. 425 425 378 +See [[here>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H1.6A0HardwareChangelog]] for hardware changelog. **) ** 426 426 427 -[[image:i mage-20230513134006-1.png||height="559" width="736"]]380 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377461619-156.png?rev=1.1||alt="1656377461619-156.png"]] 428 428 382 +This mode has total 11 bytes. As shown below: 429 429 384 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 385 +|**Value**|BAT|((( 386 +Temperature1 387 +(DS18B20) 388 +(PB3) 389 +)))|ADC|Digital in & Digital Interrupt|Temperature2 390 +(DS18B20) 391 +(PA9)|Temperature3 392 +(DS18B20) 393 +(PA10) 394 + 395 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 396 + 397 + 430 430 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 431 431 400 +This mode is supported in firmware version since v1.6.2. Please use v1.6.5 firmware version so user no need to use extra LDO for connection. 432 432 433 -[[image:image-20230512164658-2.png||height="532" width="729"]] 434 434 403 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378224664-860.png?rev=1.1||alt="1656378224664-860.png"]] 404 + 435 435 Each HX711 need to be calibrated before used. User need to do below two steps: 436 436 437 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%)to calibrate to Zero gram.438 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%)to adjust the Calibration Factor.407 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 408 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 439 439 1. ((( 440 -Weight has 4 bytes, the unit is g. 441 - 442 - 443 - 410 +Remove the limit of plus or minus 5Kg in mode 5, and expand from 2 bytes to 4 bytes, the unit is g.(Since v1.8.0) 444 444 ))) 445 445 446 446 For example: 447 447 448 - (% style="color:blue" %)**AT+GETSENSORVALUE=0**415 +**AT+WEIGAP =403.0** 449 449 450 450 Response: Weight is 401 g 451 451 452 452 Check the response of this command and adjust the value to match the real value for thing. 453 453 454 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 455 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 421 +|=((( 456 456 **Size(bytes)** 457 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 458 -|Value|BAT|(% style="width:193px" %)((( 459 -Temperature(DS18B20)(PC13) 460 -)))|(% style="width:85px" %)((( 461 -ADC(PA4) 462 -)))|(% style="width:186px" %)((( 463 -Digital in(PB15) & Digital Interrupt(PA8) 464 -)))|(% style="width:100px" %)Weight 423 +)))|=**2**|=**2**|=**2**|=**1**|=**4**|=2 424 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Weight|Reserved 465 465 466 466 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 467 467 ... ... @@ -468,199 +468,92 @@ 468 468 469 469 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 470 470 471 - 472 472 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 473 473 474 474 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. 475 475 476 -[[image:i mage-20230512181814-9.png||height="543" width="697"]]435 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378351863-572.png?rev=1.1||alt="1656378351863-572.png"]] 477 477 437 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen. 478 478 479 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 439 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4** 440 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|((( 441 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 442 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count 480 480 481 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 482 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 483 -|Value|BAT|(% style="width:256px" %)((( 484 -Temperature(DS18B20)(PC13) 485 -)))|(% style="width:108px" %)((( 486 -ADC(PA4) 487 -)))|(% style="width:126px" %)((( 488 -Digital in(PB15) 489 -)))|(% style="width:145px" %)((( 490 -Count(PA8) 491 -))) 492 - 493 493 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 494 494 495 495 496 496 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 497 497 449 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]] 498 498 499 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 500 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 451 +|=((( 501 501 **Size(bytes)** 502 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 503 -|Value|BAT|(% style="width:188px" %)((( 504 -Temperature(DS18B20) 505 -(PC13) 506 -)))|(% style="width:83px" %)((( 507 -ADC(PA5) 508 -)))|(% style="width:184px" %)((( 509 -Digital Interrupt1(PA8) 510 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved 453 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2 454 +|**Value**|BAT|Temperature(DS18B20)|ADC|((( 455 +Digital in(PA12)&Digital Interrupt1(PB14) 456 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved 511 511 512 -[[image:image-20230513111203-7.png||height="324" width="975"]] 513 - 514 - 515 515 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 516 516 517 - 518 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 519 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 460 +|=((( 520 520 **Size(bytes)** 521 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 522 -|Value|BAT|(% style="width:207px" %)((( 523 -Temperature(DS18B20) 524 -(PC13) 525 -)))|(% style="width:94px" %)((( 526 -ADC1(PA4) 527 -)))|(% style="width:198px" %)((( 528 -Digital Interrupt(PB15) 529 -)))|(% style="width:84px" %)((( 530 -ADC2(PA5) 531 -)))|(% style="width:82px" %)((( 532 -ADC3(PA8) 462 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2 463 +|**Value**|BAT|Temperature(DS18B20)|((( 464 +ADC1(PA0) 465 +)))|((( 466 +Digital in 467 +& Digital Interrupt(PB14) 468 +)))|((( 469 +ADC2(PA1) 470 +)))|((( 471 +ADC3(PA4) 533 533 ))) 534 534 535 -[[image:image-202 30513111231-8.png||height="335" width="900"]]474 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]] 536 536 537 537 538 538 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 539 539 540 - 541 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 542 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 479 +|=((( 543 543 **Size(bytes)** 544 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 545 -|Value|BAT|((( 546 -Temperature 547 -(DS18B20)(PC13) 481 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4 482 +|**Value**|BAT|((( 483 +Temperature1(PB3) 548 548 )))|((( 549 -Temperature2 550 -(DS18B20)(PB9) 485 +Temperature2(PA9) 551 551 )))|((( 552 -Digital Interrupt 553 -(PB15) 554 -)))|(% style="width:193px" %)((( 555 -Temperature3 556 -(DS18B20)(PB8) 557 -)))|(% style="width:78px" %)((( 558 -Count1(PA8) 559 -)))|(% style="width:78px" %)((( 560 -Count2(PA4) 487 +Digital in 488 +& Digital Interrupt(PA4) 489 +)))|((( 490 +Temperature3(PA10) 491 +)))|((( 492 +Count1(PB14) 493 +)))|((( 494 +Count2(PB15) 561 561 ))) 562 562 563 -[[image:image-202 30513111255-9.png||height="341"width="899"]]497 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]] 564 564 565 - (% style="color:blue" %)**The newly added AT command is issued correspondingly:**499 +**The newly added AT command is issued correspondingly:** 566 566 567 - (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)pin: Corresponding downlink:(% style="color:#037691" %)**06 00 00 xx**501 +**~ AT+INTMOD1** ** PB14** pin: Corresponding downlink: **06 00 00 xx** 568 568 569 - (% style="color:#037691" %)** AT+INTMOD2PA4**(%%)pin: Corresponding downlink:(% style="color:#037691"%)**060001 xx**503 +**~ AT+INTMOD2** **PB15** pin: Corresponding downlink:** 06 00 01 xx** 570 570 571 - (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)pin: Corresponding downlink:(% style="color:#037691" %)** 06 00 02 xx**505 +**~ AT+INTMOD3** **PA4** pin: Corresponding downlink: ** 06 00 02 xx** 572 572 507 +**AT+SETCNT=aa,bb** 573 573 574 - (%style="color:blue"%)**AT+SETCNT=aa,bb**509 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb 575 575 576 -When AA is 1, set the count of PA8pin to BB Corresponding downlink:09 01bb bb bb bb511 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb 577 577 578 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 579 579 580 580 581 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 582 - 583 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 584 - 585 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 586 - 587 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 588 - 589 - 590 -===== 2.3.2.10.a Uplink, PWM input capture ===== 591 - 592 - 593 -[[image:image-20230817172209-2.png||height="439" width="683"]] 594 - 595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 596 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 597 -|Value|Bat|(% style="width:191px" %)((( 598 -Temperature(DS18B20)(PC13) 599 -)))|(% style="width:78px" %)((( 600 -ADC(PA4) 601 -)))|(% style="width:135px" %)((( 602 -PWM_Setting 603 - 604 -&Digital Interrupt(PA8) 605 -)))|(% style="width:70px" %)((( 606 -Pulse period 607 -)))|(% style="width:89px" %)((( 608 -Duration of high level 609 -))) 610 - 611 -[[image:image-20230817170702-1.png||height="161" width="1044"]] 612 - 613 - 614 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 615 - 616 -**Frequency:** 617 - 618 -(% class="MsoNormal" %) 619 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 620 - 621 -(% class="MsoNormal" %) 622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 623 - 624 - 625 -(% class="MsoNormal" %) 626 -**Duty cycle:** 627 - 628 -Duty cycle= Duration of high level/ Pulse period*100 ~(%). 629 - 630 -[[image:image-20230818092200-1.png||height="344" width="627"]] 631 - 632 -===== 2.3.2.10.b Uplink, PWM input capture ===== 633 - 634 - 635 - 636 - 637 - 638 - 639 - 640 -===== 2.3.2.10.c Downlink, PWM output ===== 641 - 642 - 643 -[[image:image-20230817173800-3.png||height="412" width="685"]] 644 - 645 -Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 646 - 647 - xx xx xx is the output frequency, the unit is HZ. 648 - 649 - yy is the duty cycle of the output, the unit is %. 650 - 651 - zz zz is the time delay of the output, the unit is ms. 652 - 653 - 654 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 655 - 656 -The oscilloscope displays as follows: 657 - 658 -[[image:image-20230817173858-5.png||height="694" width="921"]] 659 - 660 - 661 661 === 2.3.3 Decode payload === 662 662 663 - 664 664 While using TTN V3 network, you can add the payload format to decode the payload. 665 665 666 666 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -667,14 +667,13 @@ 667 667 668 668 The payload decoder function for TTN V3 are here: 669 669 670 -SN50v3 -LBTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]523 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 671 671 672 672 673 673 ==== 2.3.3.1 Battery Info ==== 674 674 528 +Check the battery voltage for SN50v3. 675 675 676 -Check the battery voltage for SN50v3-LB. 677 - 678 678 Ex1: 0x0B45 = 2885mV 679 679 680 680 Ex2: 0x0B49 = 2889mV ... ... @@ -682,18 +682,16 @@ 682 682 683 683 ==== 2.3.3.2 Temperature (DS18B20) ==== 684 684 537 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload. 685 685 686 - If thereis aDS18B20 connectedtoPC13pin. The temperaturewillbeploadedin thepayload.539 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]] 687 687 688 - More DS18B20 cancheckthe [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]541 +**Connection:** 689 689 690 - (% style="color:blue"%)**Connection:**543 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378573379-646.png?rev=1.1||alt="1656378573379-646.png"]] 691 691 692 - [[image:image-20230512180718-8.png||height="538" width="647"]]545 +**Example**: 693 693 694 - 695 -(% style="color:blue" %)**Example**: 696 - 697 697 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 698 698 699 699 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -703,73 +703,87 @@ 703 703 704 704 ==== 2.3.3.3 Digital Input ==== 705 705 556 +The digital input for pin PA12, 706 706 707 -The digital input for pin PB15, 558 +* When PA12 is high, the bit 1 of payload byte 6 is 1. 559 +* When PA12 is low, the bit 1 of payload byte 6 is 0. 708 708 709 -* When PB15 is high, the bit 1 of payload byte 6 is 1. 710 -* When PB15 is low, the bit 1 of payload byte 6 is 0. 561 +==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 711 711 712 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %) 713 -((( 714 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 563 +The ADC pins in LSN50 can measure range from 0~~Vbat, it use reference voltage from . If user need to measure a voltage > VBat, please use resistors to divide this voltage to lower than VBat, otherwise, it may destroy the ADC pin. 715 715 716 - (%style="color:red"%)**Note:The maximumvoltageinput supports3.6V.**565 +Note: minimum VBat is 2.5v, when batrrey lower than this value. Device won't be able to send LoRa Uplink. 717 717 567 +The ADC monitors the voltage on the PA0 line, in mV. 568 + 569 +Ex: 0x021F = 543mv, 570 + 571 +**~ Example1:** Reading an Oil Sensor (Read a resistance value): 572 + 573 + 574 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627172409-28.png?rev=1.1||alt="image-20220627172409-28.png"]] 575 + 576 +In the LSN50, we can use PB4 and PA0 pin to calculate the resistance for the oil sensor. 718 718 719 -))) 720 720 721 - ==== 2.3.3.4 Analogue Digital Converter (ADC) ====579 +**Steps:** 722 722 581 +1. Solder a 10K resistor between PA0 and VCC. 582 +1. Screw oil sensor's two pins to PA0 and PB4. 723 723 724 -The measuring rangeof the ADC is only about0.1V to 1.1V The voltageresolutionis about 0.24mv.584 +The equipment circuit is as below: 725 725 726 - When themeasured output voltageof the sensor is notthin therangeof 0.1V and 1.1V, theoutput voltage terminalof the sensor shall bedivided The exampleinthellowing figure is toreducetheoutput voltageof the sensorby three timesIf it is necessary to reducemoretimes, calculate accordingto theformula inthe figurend connectthe correspondingresistance in series.586 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627172500-29.png?rev=1.1||alt="image-20220627172500-29.png"]] 727 727 728 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]588 +According to above diagram: 729 729 590 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091043-4.png?rev=1.1||alt="image-20220628091043-4.png"]] 730 730 731 - (% style="color:red" %)**Note: If the ADC type sensor needs to be powered bySN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**592 +So 732 732 594 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091344-6.png?rev=1.1||alt="image-20220628091344-6.png"]] 733 733 734 - Theositionf PA5onthe hardwareter**LSN50v3.3** is changedtothepositionhown in the figurebelow,and thecollectedvoltagebecomesone-sixth oftheoriginal.596 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091621-8.png?rev=1.1||alt="image-20220628091621-8.png"]] is the reading of ADC. So if ADC=0x05DC=0.9 v and VCC (BAT) is 2.9v 735 735 736 -[[image:image-202 30811113449-1.png||height="370" width="608"]]598 +The [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091702-9.png?rev=1.1||alt="image-20220628091702-9.png"]] 4.5K ohm 737 737 738 - ====2.3.3.5DigitalInterrupt====600 +Since the Bouy is linear resistance from 10 ~~ 70cm. 739 739 602 +The position of Bouy is [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091824-10.png?rev=1.1||alt="image-20220628091824-10.png"]] , from the bottom of Bouy. 740 740 741 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 742 742 743 - (%style="color:blue"%)**Interruptconnection method:**605 +==== 2.3.3.5 Digital Interrupt ==== 744 744 745 - [[image:image-20230513105351-5.png||height="147"width="485"]]607 +Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 746 746 609 +**~ Interrupt connection method:** 747 747 748 - (% style="color:blue"%)**Example touse withdoorsor:**611 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]] 749 749 613 +**Example to use with door sensor :** 614 + 750 750 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 751 751 752 752 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 753 753 754 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 v3-LBinterrupt interface to detect the status for the door or window.619 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window. 755 755 621 +**~ Below is the installation example:** 756 756 757 - (%style="color:blue"%)**Belowisthe installationexample:**623 +Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows: 758 758 759 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 760 - 761 761 * ((( 762 -One pin to SN50 v3-LB's PA8pin626 +One pin to LSN50's PB14 pin 763 763 ))) 764 764 * ((( 765 -The other pin to SN50 v3-LB's VDDpin629 +The other pin to LSN50's VCC pin 766 766 ))) 767 767 768 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and P A8will be at the VCC voltage.632 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage. 769 769 770 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%)and(% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.634 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 771 771 772 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v 3/1Mohm = 3uA which can be ignored.636 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored. 773 773 774 774 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]] 775 775 ... ... @@ -779,33 +779,35 @@ 779 779 780 780 The command is: 781 781 782 - (% style="color:blue" %)**AT+INTMOD1=1 **(%%)~/~/646 +**AT+INTMOD=1 **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 783 783 784 784 Below shows some screen captures in TTN V3: 785 785 786 786 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 787 787 652 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 788 788 789 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 790 - 791 791 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 792 792 656 +**Notice for hardware version LSN50 v1 < v1.3** (produced before 2018-Nov). 793 793 794 - ====2.3.3.6I2CInterface(SHT20&SHT31)====658 +In this hardware version, there is no R14 resistance solder. When use the latest firmware, it should set AT+INTMOD=0 to close the interrupt. If user need to use Interrupt in this hardware version, user need to solder R14 with 10M resistor and C1 (0.1uF) on board. 795 795 660 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379563303-771.png?rev=1.1||alt="1656379563303-771.png"]] 796 796 797 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 798 798 799 - Wehavemadean example to show how to use theI2Cinterfaceto connect to theSHT20/SHT31 Temperature and Humidity Sensor.663 +==== 2.3.3.6 I2C Interface (SHT20) ==== 800 800 801 - (% style="color:red"%)**Notice:DifferentI2Csensors have differentI2Ccommands set andinitiateprocess,ifuserwanttouseother I2Csensors,Userneedtore-writethesourcecodetosupportthose sensors.SHT20/ SHT31 code in SN50v3-LB will beagood reference.**665 +The PB6(SDA) and PB7(SCK) are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 802 802 667 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. This is supported in the stock firmware since v1.5 with **AT+MOD=1 (default value).** 803 803 669 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in LSN50 will be a good reference. 670 + 804 804 Below is the connection to SHT20/ SHT31. The connection is as below: 805 805 806 -[[image:image-202 30610170152-2.png||height="501" width="846"]]673 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]] 807 807 808 - 809 809 The device will be able to get the I2C sensor data now and upload to IoT Server. 810 810 811 811 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] ... ... @@ -823,26 +823,21 @@ 823 823 824 824 ==== 2.3.3.7 Distance Reading ==== 825 825 692 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 826 826 827 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 828 828 829 - 830 830 ==== 2.3.3.8 Ultrasonic Sensor ==== 831 831 697 +The LSN50 v1.5 firmware supports ultrasonic sensor (with AT+MOD=2) such as SEN0208 from DF-Robot. This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 832 832 833 -Th isFundamental Principles of thissensorcanbe found atthislink:[[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]699 +The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 834 834 835 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 836 - 837 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 838 - 839 839 The picture below shows the connection: 840 840 841 -[[image:i mage-20230512173903-6.png||height="596" width="715"]]703 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656380061365-178.png?rev=1.1||alt="1656380061365-178.png"]] 842 842 705 +Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 843 843 844 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 845 - 846 846 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 847 847 848 848 **Example:** ... ... @@ -849,72 +849,50 @@ 849 849 850 850 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 851 851 713 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]] 852 852 853 - ==== 2.3.3.9 Battery Output-BATpin==715 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]] 854 854 717 +You can see the serial output in ULT mode as below: 855 855 856 - The BAT pin of SN50v3-LB is connected to the Battery directly.If users want touse BAT pintopower anexternalsensor. User needto makesurethe externalsensor is oflow powerconsumption. Because the BAT pinis alwaysopen. If the externalsensorisof high powerconsumption. thebattery of SN50v3-LB will run out very soon.719 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]] 857 857 721 +**In TTN V3 server:** 858 858 859 - ==== 2.3.3.10+5VOutput===723 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]] 860 860 725 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]] 861 861 862 - SN50v3-LBwill enable+5V outputbeforeallsamplingand disable the +5v after all sampling.727 +==== 2.3.3.9 Battery Output - BAT pin ==== 863 863 864 -The 5 Voutput timecanbecontrolledbyATCommand.729 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 865 865 866 -(% style="color:blue" %)**AT+5VT=1000** 867 867 868 - Meansset 5V valid time to have1000ms.So the real5Voutputwill actually have 1000ms + sampling time for other sensors.732 +==== 2.3.3.10 +5V Output ==== 869 869 870 - Bydefault the**AT+5VT=500**.Ifthe externalsensorwhich require5vand require more time to get stablestate, user canuse this commandtoincrease thepowerON durationforthissensor.734 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 871 871 736 +The 5V output time can be controlled by AT Command. 872 872 873 -= === 2.3.3.11 BH1750Illumination Sensor ====738 +**AT+5VT=1000** 874 874 740 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 875 875 876 - MOD=1support thissensor.Thesensorvalueis in the8^^th^^and9^^th^^bytes.742 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 877 877 878 -[[image:image-20230512172447-4.png||height="416" width="712"]] 879 879 880 880 881 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]746 +==== 2.3.3.11 BH1750 Illumination Sensor ==== 882 882 748 +MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 883 883 884 - ==== 2.3.3.12PWMMOD====750 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-11.jpeg?rev=1.1||alt="image-20220628110012-11.jpeg"]] 885 885 752 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]] 886 886 887 -* ((( 888 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 889 -))) 890 -* ((( 891 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 892 -))) 893 893 894 - [[image:image-20230817183249-3.png||height="320"width="417"]]755 +==== 2.3.3.12 Working MOD ==== 895 895 896 -* ((( 897 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 898 -))) 899 -* ((( 900 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 901 -))) 902 -* ((( 903 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to Class C. Power consumption will not be low. 904 - 905 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 906 - 907 -a) If needs to realtime control output, SN50v3-LB has be run in CLass C and have to use external power source. 908 - 909 -b) If the output duration is more than 30 seconds, bettert to use external power source. 910 - 911 - 912 - 913 -))) 914 - 915 -==== 2.3.3.13 Working MOD ==== 916 - 917 - 918 918 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 919 919 920 920 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -927,10 +927,6 @@ 927 927 * 3: MOD4 928 928 * 4: MOD5 929 929 * 5: MOD6 930 -* 6: MOD7 931 -* 7: MOD8 932 -* 8: MOD9 933 -* 9: MOD10 934 934 935 935 == 2.4 Payload Decoder file == 936 936 ... ... @@ -939,9 +939,10 @@ 939 939 940 940 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 941 941 942 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50 _v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]777 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]] 943 943 944 944 780 + 945 945 == 2.5 Frequency Plans == 946 946 947 947 ... ... @@ -977,7 +977,7 @@ 977 977 == 3.3 Commands special design for SN50v3-LB == 978 978 979 979 980 -These commands only valid for S N50v3-LB, as below:816 +These commands only valid for S31x-LB, as below: 981 981 982 982 983 983 === 3.3.1 Set Transmit Interval Time === ... ... @@ -988,7 +988,7 @@ 988 988 (% style="color:blue" %)**AT Command: AT+TDC** 989 989 990 990 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 991 -|=(% style="width: 156px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**827 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 992 992 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 993 993 30000 994 994 OK ... ... @@ -1010,29 +1010,28 @@ 1010 1010 1011 1011 === 3.3.2 Get Device Status === 1012 1012 849 +Send a LoRaWAN downlink to ask device send Alarm settings. 1013 1013 1014 - Senda LoRaWANdownlinktosk thedevicetosend its status.851 +(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 1015 1015 1016 - (% style="color:blue"%)**DownlinkPayload:0x2601**853 +Sensor will upload Device Status via FPORT=5. See payload section for detail. 1017 1017 1018 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 1019 1019 856 +=== 3.3.7 Set Interrupt Mode === 1020 1020 1021 -=== 3.3.3 Set Interrupt Mode === 1022 1022 1023 - 1024 1024 Feature, Set Interrupt mode for GPIO_EXIT. 1025 1025 1026 -(% style="color:blue" %)**AT Command: AT+INTMOD 1,AT+INTMOD2,AT+INTMOD3**861 +(% style="color:blue" %)**AT Command: AT+INTMOD** 1027 1027 1028 1028 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1029 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1030 -|(% style="width:154px" %)AT+INTMOD 1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((864 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 865 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1031 1031 0 1032 1032 OK 1033 1033 the mode is 0 =Disable Interrupt 1034 1034 ))) 1035 -|(% style="width:154px" %)AT+INTMOD 1=2|(% style="width:196px" %)(((870 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 1036 1036 Set Transmit Interval 1037 1037 0. (Disable Interrupt), 1038 1038 ~1. (Trigger by rising and falling edge) ... ... @@ -1039,11 +1039,6 @@ 1039 1039 2. (Trigger by falling edge) 1040 1040 3. (Trigger by rising edge) 1041 1041 )))|(% style="width:157px" %)OK 1042 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 1043 -Set Transmit Interval 1044 -trigger by rising edge. 1045 -)))|(% style="width:157px" %)OK 1046 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK 1047 1047 1048 1048 (% style="color:blue" %)**Downlink Command: 0x06** 1049 1049 ... ... @@ -1051,147 +1051,9 @@ 1051 1051 1052 1052 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 1053 1053 1054 -* Example 1: Downlink Payload: 06000000 **~-~-->** AT+INTMOD1=0 1055 -* Example 2: Downlink Payload: 06000003 **~-~-->** AT+INTMOD1=3 1056 -* Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 1057 -* Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 884 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 885 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 1058 1058 1059 -=== 3.3.4 Set Power Output Duration === 1060 - 1061 - 1062 -Control the output duration 5V . Before each sampling, device will 1063 - 1064 -~1. first enable the power output to external sensor, 1065 - 1066 -2. keep it on as per duration, read sensor value and construct uplink payload 1067 - 1068 -3. final, close the power output. 1069 - 1070 -(% style="color:blue" %)**AT Command: AT+5VT** 1071 - 1072 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1073 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1074 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1075 -500(default) 1076 -OK 1077 -))) 1078 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( 1079 -Close after a delay of 1000 milliseconds. 1080 -)))|(% style="width:157px" %)OK 1081 - 1082 -(% style="color:blue" %)**Downlink Command: 0x07** 1083 - 1084 -Format: Command Code (0x07) followed by 2 bytes. 1085 - 1086 -The first and second bytes are the time to turn on. 1087 - 1088 -* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1089 -* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1090 - 1091 -=== 3.3.5 Set Weighing parameters === 1092 - 1093 - 1094 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 1095 - 1096 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1097 - 1098 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1099 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1100 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1101 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1102 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 1103 - 1104 -(% style="color:blue" %)**Downlink Command: 0x08** 1105 - 1106 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes. 1107 - 1108 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes. 1109 - 1110 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value. 1111 - 1112 -* Example 1: Downlink Payload: 0801 **~-~-->** AT+WEIGRE 1113 -* Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1114 -* Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1115 - 1116 -=== 3.3.6 Set Digital pulse count value === 1117 - 1118 - 1119 -Feature: Set the pulse count value. 1120 - 1121 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. 1122 - 1123 -(% style="color:blue" %)**AT Command: AT+SETCNT** 1124 - 1125 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1126 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1127 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1128 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1129 - 1130 -(% style="color:blue" %)**Downlink Command: 0x09** 1131 - 1132 -Format: Command Code (0x09) followed by 5 bytes. 1133 - 1134 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized. 1135 - 1136 -* Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1137 -* Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1138 - 1139 -=== 3.3.7 Set Workmode === 1140 - 1141 - 1142 -Feature: Switch working mode. 1143 - 1144 -(% style="color:blue" %)**AT Command: AT+MOD** 1145 - 1146 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1147 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1148 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1149 -OK 1150 -))) 1151 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1152 -OK 1153 -Attention:Take effect after ATZ 1154 -))) 1155 - 1156 -(% style="color:blue" %)**Downlink Command: 0x0A** 1157 - 1158 -Format: Command Code (0x0A) followed by 1 bytes. 1159 - 1160 -* Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1161 -* Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1162 - 1163 -=== 3.3.8 PWM setting === 1164 - 1165 - 1166 -Feature: Set the time acquisition unit for PWM input capture. 1167 - 1168 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1169 - 1170 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1171 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1172 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1173 -0(default) 1174 - 1175 -OK 1176 -))) 1177 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)((( 1178 -OK 1179 - 1180 -))) 1181 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK 1182 - 1183 -(% style="color:blue" %)**Downlink Command: 0x0C** 1184 - 1185 -Format: Command Code (0x0C) followed by 1 bytes. 1186 - 1187 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1188 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1189 - 1190 - 1191 - 1192 - 1193 - 1194 - 1195 1195 = 4. Battery & Power Consumption = 1196 1196 1197 1197 ... ... @@ -1204,43 +1204,29 @@ 1204 1204 1205 1205 1206 1206 (% class="wikigeneratedid" %) 1207 - **User can change firmware SN50v3-LB to:**899 +User can change firmware SN50v3-LB to: 1208 1208 1209 1209 * Change Frequency band/ region. 1210 1210 * Update with new features. 1211 1211 * Fix bugs. 1212 1212 1213 - **Firmware and changelog can be downloaded from :****[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**905 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1214 1214 1215 -**Methods to Update Firmware:** 1216 1216 1217 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1218 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 908 +Methods to Update Firmware: 1219 1219 910 +* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 911 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 912 + 1220 1220 = 6. FAQ = 1221 1221 1222 1222 == 6.1 Where can i find source code of SN50v3-LB? == 1223 1223 1224 - 1225 1225 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1226 1226 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1227 1227 1228 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1229 1229 1230 1230 1231 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1232 - 1233 - 1234 -== 6.3 How to put several sensors to a SN50v3-LB? == 1235 - 1236 - 1237 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1238 - 1239 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1240 - 1241 -[[image:image-20230810121434-1.png||height="242" width="656"]] 1242 - 1243 - 1244 1244 = 7. Order Info = 1245 1245 1246 1246 ... ... @@ -1266,7 +1266,6 @@ 1266 1266 1267 1267 = 8. Packing Info = 1268 1268 1269 - 1270 1270 (% style="color:#037691" %)**Package Includes**: 1271 1271 1272 1272 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1282,5 +1282,4 @@ 1282 1282 1283 1283 1284 1284 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1285 - 1286 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]] 962 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- image-20230512181814-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -2.2 MB - Content
- image-20230513084523-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -611.3 KB - Content
- image-20230513102034-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -607.1 KB - Content
- image-20230513103633-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -595.5 KB - Content
- image-20230513105207-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -384.7 KB - Content
- image-20230513105351-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.6 KB - Content
- image-20230513110214-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -172.7 KB - Content
- image-20230513111203-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -79.9 KB - Content
- image-20230513111231-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -64.9 KB - Content
- image-20230513111255-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -70.4 KB - Content
- image-20230513134006-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.9 MB - Content
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.0 KB - Content
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.9 KB - Content