Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. ting1 +XWiki.Saxer - Content
-
... ... @@ -19,7 +19,7 @@ 19 19 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 ... ... @@ -27,6 +27,7 @@ 27 27 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 + 30 30 == 1.2 Features == 31 31 32 32 ... ... @@ -580,16 +580,13 @@ 580 580 581 581 ==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 582 582 583 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 584 - 585 585 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 586 586 587 -[[It should be noted when using PWM mode.>> ||anchor="H2.3.3.12A0PWMMOD"]]586 +[[It should be noted when using PWM mode.>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/#H2.3.3.12A0PWMMOD]] 588 588 589 589 590 590 ===== 2.3.2.10.a Uplink, PWM input capture ===== 591 591 592 - 593 593 [[image:image-20230817172209-2.png||height="439" width="683"]] 594 594 595 595 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) ... ... @@ -613,26 +613,44 @@ 613 613 614 614 When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 615 615 616 - **Frequency:**614 +Frequency: 617 617 618 618 (% class="MsoNormal" %) 619 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0 ,**(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);617 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0 ,** 620 620 619 +((( 620 + 621 + 622 +(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 623 +))) 624 + 621 621 (% class="MsoNormal" %) 622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1 ,**(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);626 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1 ,** 623 623 628 +((( 624 624 630 + 631 +(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 632 +))) 633 + 625 625 (% class="MsoNormal" %) 626 - **Duty cycle:**635 +Duty cycle: 627 627 628 628 Duty cycle= Duration of high level/ Pulse period*100 ~(%). 629 629 639 +(% class="MsoNormal" %) 640 + 641 + 642 +((( 643 + 644 +))) 645 + 646 + 630 630 [[image:image-20230818092200-1.png||height="344" width="627"]] 631 631 632 632 633 633 ===== 2.3.2.10.b Downlink, PWM output ===== 634 634 635 - 636 636 [[image:image-20230817173800-3.png||height="412" width="685"]] 637 637 638 638 Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** ... ... @@ -890,18 +890,8 @@ 890 890 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 891 891 ))) 892 892 * ((( 893 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 894 -))) 895 -* ((( 896 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to Class C. Power consumption will not be low. 909 +Since the device can only detect a pulse period of 50ms when AT+PWMSET=0 (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 897 897 898 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 899 - 900 -a) If needs to realtime control output, SN50v3-LB has be run in CLass C and have to use external power source. 901 - 902 -b) If the output duration is more than 30 seconds, bettert to use external power source. 903 - 904 - 905 905 906 906 ))) 907 907 ... ... @@ -1153,9 +1153,10 @@ 1153 1153 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1154 1154 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1155 1155 1156 -=== 3.3.8 PWM setting === 1157 1157 1158 1158 1164 +=== 3.3.8 PWM setting === 1165 + 1159 1159 Feature: Set the time acquisition unit for PWM input capture. 1160 1160 1161 1161 (% style="color:blue" %)**AT Command: AT+PWMSET** ... ... @@ -1180,6 +1180,7 @@ 1180 1180 * Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1181 1181 * Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1182 1182 1190 + 1183 1183 = 4. Battery & Power Consumption = 1184 1184 1185 1185