<
From version < 74.8 >
edited by Mengting Qiu
on 2023/12/11 20:00
To version < 60.1 >
edited by Saxer Lin
on 2023/08/17 17:06
>
Change comment: Uploaded new attachment "image-20230817170702-1.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Saxer
Content
... ... @@ -19,7 +19,7 @@
19 19  
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
... ... @@ -27,6 +27,7 @@
27 27  
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 +
30 30  == 1.2 ​Features ==
31 31  
32 32  
... ... @@ -40,6 +40,8 @@
40 40  * Downlink to change configure
41 41  * 8500mAh Battery for long term use
42 42  
44 +
45 +
43 43  == 1.3 Specification ==
44 44  
45 45  
... ... @@ -77,6 +77,8 @@
77 77  * Sleep Mode: 5uA @ 3.3v
78 78  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79 79  
83 +
84 +
80 80  == 1.4 Sleep mode and working mode ==
81 81  
82 82  
... ... @@ -104,6 +104,8 @@
104 104  )))
105 105  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106 106  
112 +
113 +
107 107  == 1.6 BLE connection ==
108 108  
109 109  
... ... @@ -578,79 +578,6 @@
578 578  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
579 579  
580 580  
581 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
582 -
583 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
584 -
585 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
586 -
587 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
588 -
589 -
590 -===== 2.3.2.10.a  Uplink, PWM input capture =====
591 -
592 -
593 -[[image:image-20230817172209-2.png||height="439" width="683"]]
594 -
595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
596 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
597 -|Value|Bat|(% style="width:191px" %)(((
598 -Temperature(DS18B20)(PC13)
599 -)))|(% style="width:78px" %)(((
600 -ADC(PA4)
601 -)))|(% style="width:135px" %)(((
602 -PWM_Setting
603 -
604 -&Digital Interrupt(PA8)
605 -)))|(% style="width:70px" %)(((
606 -Pulse period
607 -)))|(% style="width:89px" %)(((
608 -Duration of high level
609 -)))
610 -
611 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
612 -
613 -
614 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
615 -
616 -**Frequency:**
617 -
618 -(% class="MsoNormal" %)
619 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
620 -
621 -(% class="MsoNormal" %)
622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
623 -
624 -
625 -(% class="MsoNormal" %)
626 -**Duty cycle:**
627 -
628 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
629 -
630 -[[image:image-20230818092200-1.png||height="344" width="627"]]
631 -
632 -
633 -===== 2.3.2.10.b  Downlink, PWM output =====
634 -
635 -
636 -[[image:image-20230817173800-3.png||height="412" width="685"]]
637 -
638 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
639 -
640 - xx xx xx is the output frequency, the unit is HZ.
641 -
642 - yy is the duty cycle of the output, the unit is %.
643 -
644 - zz zz is the time delay of the output, the unit is ms.
645 -
646 -
647 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
648 -
649 -The oscilloscope displays as follows:
650 -
651 -[[image:image-20230817173858-5.png||height="694" width="921"]]
652 -
653 -
654 654  === 2.3.3  ​Decode payload ===
655 655  
656 656  
... ... @@ -874,40 +874,9 @@
874 874  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
875 875  
876 876  
877 -==== 2.3.3.12  PWM MOD ====
811 +==== 2.3.3.12  Working MOD ====
878 878  
879 879  
880 -* (((
881 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
882 -)))
883 -* (((
884 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
885 -)))
886 -
887 - [[image:image-20230817183249-3.png||height="320" width="417"]]
888 -
889 -* (((
890 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
891 -)))
892 -* (((
893 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
894 -)))
895 -* (((
896 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to Class C. Power consumption will not be low.
897 -
898 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
899 -
900 -a) If needs to realtime control output, SN50v3-LB has be run in CLass C and have to use external power source.
901 -
902 -b) If the output duration is more than 30 seconds, bettert to use external power source. 
903 -
904 -
905 -
906 -)))
907 -
908 -==== 2.3.3.13  Working MOD ====
909 -
910 -
911 911  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
912 912  
913 913  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -923,8 +923,9 @@
923 923  * 6: MOD7
924 924  * 7: MOD8
925 925  * 8: MOD9
926 -* 9: MOD10
927 927  
830 +
831 +
928 928  == 2.4 Payload Decoder file ==
929 929  
930 930  
... ... @@ -954,6 +954,8 @@
954 954  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
955 955  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
956 956  
861 +
862 +
957 957  == 3.2 General Commands ==
958 958  
959 959  
... ... @@ -1001,6 +1001,8 @@
1001 1001  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1002 1002  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1003 1003  
910 +
911 +
1004 1004  === 3.3.2 Get Device Status ===
1005 1005  
1006 1006  
... ... @@ -1049,6 +1049,8 @@
1049 1049  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1050 1050  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1051 1051  
960 +
961 +
1052 1052  === 3.3.4 Set Power Output Duration ===
1053 1053  
1054 1054  
... ... @@ -1081,6 +1081,8 @@
1081 1081  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1082 1082  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1083 1083  
994 +
995 +
1084 1084  === 3.3.5 Set Weighing parameters ===
1085 1085  
1086 1086  
... ... @@ -1106,6 +1106,8 @@
1106 1106  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1107 1107  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1108 1108  
1021 +
1022 +
1109 1109  === 3.3.6 Set Digital pulse count value ===
1110 1110  
1111 1111  
... ... @@ -1129,6 +1129,8 @@
1129 1129  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1130 1130  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1131 1131  
1046 +
1047 +
1132 1132  === 3.3.7 Set Workmode ===
1133 1133  
1134 1134  
... ... @@ -1153,33 +1153,8 @@
1153 1153  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1154 1154  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1155 1155  
1156 -=== 3.3.8 PWM setting ===
1157 1157  
1158 1158  
1159 -Feature: Set the time acquisition unit for PWM input capture.
1160 -
1161 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1162 -
1163 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1164 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1165 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1166 -0(default)
1167 -
1168 -OK
1169 -)))
1170 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1171 -OK
1172 -
1173 -)))
1174 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1175 -
1176 -(% style="color:blue" %)**Downlink Command: 0x0C**
1177 -
1178 -Format: Command Code (0x0C) followed by 1 bytes.
1179 -
1180 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1181 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1182 -
1183 1183  = 4. Battery & Power Consumption =
1184 1184  
1185 1185  
... ... @@ -1205,6 +1205,8 @@
1205 1205  * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1206 1206  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1207 1207  
1099 +
1100 +
1208 1208  = 6. FAQ =
1209 1209  
1210 1210  == 6.1 Where can i find source code of SN50v3-LB? ==
... ... @@ -1213,6 +1213,8 @@
1213 1213  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1214 1214  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1215 1215  
1109 +
1110 +
1216 1216  == 6.2 How to generate PWM Output in SN50v3-LB? ==
1217 1217  
1218 1218  
... ... @@ -1252,6 +1252,8 @@
1252 1252  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1253 1253  * (% style="color:red" %)**NH**(%%): No Hole
1254 1254  
1150 +
1151 +
1255 1255  = 8. ​Packing Info =
1256 1256  
1257 1257  
... ... @@ -1266,6 +1266,8 @@
1266 1266  * Package Size / pcs : cm
1267 1267  * Weight / pcs : g
1268 1268  
1166 +
1167 +
1269 1269  = 9. Support =
1270 1270  
1271 1271  
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0