Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 15 removed)
- image-20230610162852-1.png
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. ting1 +XWiki.Ellie - Content
-
... ... @@ -19,7 +19,7 @@ 19 19 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 ... ... @@ -27,6 +27,7 @@ 27 27 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 + 30 30 == 1.2 Features == 31 31 32 32 ... ... @@ -40,6 +40,7 @@ 40 40 * Downlink to change configure 41 41 * 8500mAh Battery for long term use 42 42 44 + 43 43 == 1.3 Specification == 44 44 45 45 ... ... @@ -77,6 +77,7 @@ 77 77 * Sleep Mode: 5uA @ 3.3v 78 78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 79 79 82 + 80 80 == 1.4 Sleep mode and working mode == 81 81 82 82 ... ... @@ -104,6 +104,7 @@ 104 104 ))) 105 105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 106 106 110 + 107 107 == 1.6 BLE connection == 108 108 109 109 ... ... @@ -122,7 +122,7 @@ 122 122 == 1.7 Pin Definitions == 123 123 124 124 125 -[[image:image-20230 610163213-1.png||height="404" width="699"]]129 +[[image:image-20230513102034-2.png]] 126 126 127 127 128 128 == 1.8 Mechanical == ... ... @@ -135,7 +135,7 @@ 135 135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 136 136 137 137 138 -== 1.9Hole Option ==142 +== Hole Option == 139 139 140 140 141 141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: ... ... @@ -150,7 +150,7 @@ 150 150 == 2.1 How it works == 151 151 152 152 153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S N50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.157 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 154 154 155 155 156 156 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -158,7 +158,7 @@ 158 158 159 159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 160 160 161 -The LPS8 v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.165 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 162 162 163 163 164 164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -207,7 +207,7 @@ 207 207 === 2.3.1 Device Status, FPORT~=5 === 208 208 209 209 210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 -LBto send device configure detail, include device configure status. SN50v3-LBwill uplink a payload via FPort=5 to server.214 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 211 211 212 212 The Payload format is as below. 213 213 ... ... @@ -215,44 +215,44 @@ 215 215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 216 216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 217 217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 218 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 222 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 219 219 220 220 Example parse in TTNv3 221 221 222 222 223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3 -LB, this value is 0x1C227 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 224 224 225 225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 226 226 227 227 (% style="color:#037691" %)**Frequency Band**: 228 228 229 -0x01: EU868 233 +*0x01: EU868 230 230 231 -0x02: US915 235 +*0x02: US915 232 232 233 -0x03: IN865 237 +*0x03: IN865 234 234 235 -0x04: AU915 239 +*0x04: AU915 236 236 237 -0x05: KZ865 241 +*0x05: KZ865 238 238 239 -0x06: RU864 243 +*0x06: RU864 240 240 241 -0x07: AS923 245 +*0x07: AS923 242 242 243 -0x08: AS923-1 247 +*0x08: AS923-1 244 244 245 -0x09: AS923-2 249 +*0x09: AS923-2 246 246 247 -0x0a: AS923-3 251 +*0x0a: AS923-3 248 248 249 -0x0b: CN470 253 +*0x0b: CN470 250 250 251 -0x0c: EU433 255 +*0x0c: EU433 252 252 253 -0x0d: KR920 257 +*0x0d: KR920 254 254 255 -0x0e: MA869 259 +*0x0e: MA869 256 256 257 257 258 258 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -276,22 +276,20 @@ 276 276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 277 277 278 278 279 -SN50v3 -LBhas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command(% style="color:blue" %)**AT+MOD**(%%)to set SN50v3-LBto different working modes.283 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 280 280 281 281 For example: 282 282 283 - (% style="color:blue" %)**AT+MOD=2 **(%%)287 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 284 284 285 285 286 286 (% style="color:red" %) **Important Notice:** 287 287 288 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 292 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 293 +1. All modes share the same Payload Explanation from HERE. 294 +1. By default, the device will send an uplink message every 20 minutes. 289 289 290 -2. All modes share the same Payload Explanation from HERE. 291 291 292 -3. By default, the device will send an uplink message every 20 minutes. 293 - 294 - 295 295 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 296 296 297 297 ... ... @@ -299,7 +299,7 @@ 299 299 300 300 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 301 301 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 302 -|Value|Bat|(% style="width:191px" %)((( 304 +|**Value**|Bat|(% style="width:191px" %)((( 303 303 Temperature(DS18B20)(PC13) 304 304 )))|(% style="width:78px" %)((( 305 305 ADC(PA4) ... ... @@ -314,6 +314,7 @@ 314 314 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 315 315 316 316 319 + 317 317 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 318 318 319 319 ... ... @@ -321,7 +321,7 @@ 321 321 322 322 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 323 323 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 324 -|Value|BAT|(% style="width:196px" %)((( 327 +|**Value**|BAT|(% style="width:196px" %)((( 325 325 Temperature(DS18B20)(PC13) 326 326 )))|(% style="width:87px" %)((( 327 327 ADC(PA4) ... ... @@ -328,8 +328,9 @@ 328 328 )))|(% style="width:189px" %)((( 329 329 Digital in(PB15) & Digital Interrupt(PA8) 330 330 )))|(% style="width:208px" %)((( 331 -Distance measure by: 1) LIDAR-Lite V3HP 332 -Or 2) Ultrasonic Sensor 334 +Distance measure by:1) LIDAR-Lite V3HP 335 +Or 336 +2) Ultrasonic Sensor 333 333 )))|(% style="width:117px" %)Reserved 334 334 335 335 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] ... ... @@ -351,7 +351,7 @@ 351 351 352 352 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 353 353 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 354 -|Value|BAT|(% style="width:183px" %)((( 358 +|**Value**|BAT|(% style="width:183px" %)((( 355 355 Temperature(DS18B20)(PC13) 356 356 )))|(% style="width:173px" %)((( 357 357 Digital in(PB15) & Digital Interrupt(PA8) ... ... @@ -359,7 +359,8 @@ 359 359 ADC(PA4) 360 360 )))|(% style="width:323px" %)((( 361 361 Distance measure by:1)TF-Mini plus LiDAR 362 -Or 2) TF-Luna LiDAR 366 +Or 367 +2) TF-Luna LiDAR 363 363 )))|(% style="width:188px" %)Distance signal strength 364 364 365 365 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] ... ... @@ -376,7 +376,7 @@ 376 376 377 377 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 378 378 379 -[[image:image-20230 610170047-1.png||height="452" width="799"]]384 +[[image:image-20230513105207-4.png||height="469" width="802"]] 380 380 381 381 382 382 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== ... ... @@ -388,7 +388,7 @@ 388 388 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 389 389 **Size(bytes)** 390 390 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 391 -|Value|(% style="width:68px" %)((( 396 +|**Value**|(% style="width:68px" %)((( 392 392 ADC1(PA4) 393 393 )))|(% style="width:75px" %)((( 394 394 ADC2(PA5) ... ... @@ -412,7 +412,7 @@ 412 412 413 413 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 414 414 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 415 -|Value|BAT|(% style="width:186px" %)((( 420 +|**Value**|BAT|(% style="width:186px" %)((( 416 416 Temperature1(DS18B20)(PC13) 417 417 )))|(% style="width:82px" %)((( 418 418 ADC(PA4) ... ... @@ -423,10 +423,10 @@ 423 423 424 424 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 425 425 426 - 427 427 [[image:image-20230513134006-1.png||height="559" width="736"]] 428 428 429 429 434 + 430 430 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 431 431 432 432 ... ... @@ -434,8 +434,8 @@ 434 434 435 435 Each HX711 need to be calibrated before used. User need to do below two steps: 436 436 437 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%)to calibrate to Zero gram.438 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%)to adjust the Calibration Factor.442 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 443 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 439 439 1. ((( 440 440 Weight has 4 bytes, the unit is g. 441 441 ... ... @@ -445,7 +445,7 @@ 445 445 446 446 For example: 447 447 448 - (% style="color:blue" %)**AT+GETSENSORVALUE =0**453 +**AT+GETSENSORVALUE =0** 449 449 450 450 Response: Weight is 401 g 451 451 ... ... @@ -455,7 +455,7 @@ 455 455 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 456 456 **Size(bytes)** 457 457 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 458 -|Value|BAT|(% style="width:193px" %)((( 463 +|**Value**|BAT|(% style="width:193px" %)((( 459 459 Temperature(DS18B20)(PC13) 460 460 )))|(% style="width:85px" %)((( 461 461 ADC(PA4) ... ... @@ -466,6 +466,7 @@ 466 466 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 467 467 468 468 474 + 469 469 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 470 470 471 471 ... ... @@ -480,7 +480,7 @@ 480 480 481 481 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 482 482 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 483 -|Value|BAT|(% style="width:256px" %)((( 489 +|**Value**|BAT|(% style="width:256px" %)((( 484 484 Temperature(DS18B20)(PC13) 485 485 )))|(% style="width:108px" %)((( 486 486 ADC(PA4) ... ... @@ -493,6 +493,7 @@ 493 493 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 494 494 495 495 502 + 496 496 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 497 497 498 498 ... ... @@ -500,7 +500,7 @@ 500 500 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 501 501 **Size(bytes)** 502 502 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 503 -|Value|BAT|(% style="width:188px" %)((( 510 +|**Value**|BAT|(% style="width:188px" %)((( 504 504 Temperature(DS18B20) 505 505 (PC13) 506 506 )))|(% style="width:83px" %)((( ... ... @@ -519,7 +519,7 @@ 519 519 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 520 520 **Size(bytes)** 521 521 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 522 -|Value|BAT|(% style="width:207px" %)((( 529 +|**Value**|BAT|(% style="width:207px" %)((( 523 523 Temperature(DS18B20) 524 524 (PC13) 525 525 )))|(% style="width:94px" %)((( ... ... @@ -542,7 +542,7 @@ 542 542 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 543 543 **Size(bytes)** 544 544 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 545 -|Value|BAT|((( 552 +|**Value**|BAT|((( 546 546 Temperature 547 547 (DS18B20)(PC13) 548 548 )))|((( ... ... @@ -578,79 +578,6 @@ 578 578 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 579 579 580 580 581 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 582 - 583 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 584 - 585 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 586 - 587 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 588 - 589 - 590 -===== 2.3.2.10.a Uplink, PWM input capture ===== 591 - 592 - 593 -[[image:image-20230817172209-2.png||height="439" width="683"]] 594 - 595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 596 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 597 -|Value|Bat|(% style="width:191px" %)((( 598 -Temperature(DS18B20)(PC13) 599 -)))|(% style="width:78px" %)((( 600 -ADC(PA4) 601 -)))|(% style="width:135px" %)((( 602 -PWM_Setting 603 - 604 -&Digital Interrupt(PA8) 605 -)))|(% style="width:70px" %)((( 606 -Pulse period 607 -)))|(% style="width:89px" %)((( 608 -Duration of high level 609 -))) 610 - 611 -[[image:image-20230817170702-1.png||height="161" width="1044"]] 612 - 613 - 614 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 615 - 616 -**Frequency:** 617 - 618 -(% class="MsoNormal" %) 619 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 620 - 621 -(% class="MsoNormal" %) 622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 623 - 624 - 625 -(% class="MsoNormal" %) 626 -**Duty cycle:** 627 - 628 -Duty cycle= Duration of high level/ Pulse period*100 ~(%). 629 - 630 -[[image:image-20230818092200-1.png||height="344" width="627"]] 631 - 632 - 633 -===== 2.3.2.10.b Downlink, PWM output ===== 634 - 635 - 636 -[[image:image-20230817173800-3.png||height="412" width="685"]] 637 - 638 -Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 639 - 640 - xx xx xx is the output frequency, the unit is HZ. 641 - 642 - yy is the duty cycle of the output, the unit is %. 643 - 644 - zz zz is the time delay of the output, the unit is ms. 645 - 646 - 647 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 648 - 649 -The oscilloscope displays as follows: 650 - 651 -[[image:image-20230817173858-5.png||height="694" width="921"]] 652 - 653 - 654 654 === 2.3.3 Decode payload === 655 655 656 656 ... ... @@ -660,13 +660,13 @@ 660 660 661 661 The payload decoder function for TTN V3 are here: 662 662 663 -SN50v3 -LBTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]597 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 664 664 665 665 666 666 ==== 2.3.3.1 Battery Info ==== 667 667 668 668 669 -Check the battery voltage for SN50v3 -LB.603 +Check the battery voltage for SN50v3. 670 670 671 671 Ex1: 0x0B45 = 2885mV 672 672 ... ... @@ -714,24 +714,19 @@ 714 714 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 715 715 716 716 717 -The measuring range of the ADC is only about 0 .1V to 1.1V The voltage resolution is about 0.24mv.651 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 718 718 719 -When the measured output voltage of the sensor is not within the range of 0 .1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.653 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 720 720 721 721 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 722 722 723 - 724 724 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 725 725 726 726 727 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 728 - 729 -[[image:image-20230811113449-1.png||height="370" width="608"]] 730 - 731 731 ==== 2.3.3.5 Digital Interrupt ==== 732 732 733 733 734 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 -LBwill send a packet to the server.663 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 735 735 736 736 (% style="color:blue" %)** Interrupt connection method:** 737 737 ... ... @@ -744,18 +744,18 @@ 744 744 745 745 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 746 746 747 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3 -LBinterrupt interface to detect the status for the door or window.676 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 748 748 749 749 750 750 (% style="color:blue" %)**Below is the installation example:** 751 751 752 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3 -LBas follows:681 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 753 753 754 754 * ((( 755 -One pin to SN50v3 -LB's PA8 pin684 +One pin to SN50_v3's PA8 pin 756 756 ))) 757 757 * ((( 758 -The other pin to SN50v3 -LB's VDD pin687 +The other pin to SN50_v3's VDD pin 759 759 ))) 760 760 761 761 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -772,7 +772,7 @@ 772 772 773 773 The command is: 774 774 775 -(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ 704 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 776 776 777 777 Below shows some screen captures in TTN V3: 778 778 ... ... @@ -779,7 +779,7 @@ 779 779 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 780 780 781 781 782 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:711 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 783 783 784 784 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 785 785 ... ... @@ -791,13 +791,12 @@ 791 791 792 792 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 793 793 794 - (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LBwill be a good reference.**723 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference. 795 795 796 - 797 797 Below is the connection to SHT20/ SHT31. The connection is as below: 798 798 799 -[[image:image-20230610170152-2.png||height="501" width="846"]] 800 800 728 +[[image:image-20230513103633-3.png||height="448" width="716"]] 801 801 802 802 The device will be able to get the I2C sensor data now and upload to IoT Server. 803 803 ... ... @@ -825,7 +825,7 @@ 825 825 826 826 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 827 827 828 -The SN50v3 -LBdetects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.756 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 829 829 830 830 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 831 831 ... ... @@ -834,7 +834,7 @@ 834 834 [[image:image-20230512173903-6.png||height="596" width="715"]] 835 835 836 836 837 -Connect to the SN50v3 -LBand run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).765 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 838 838 839 839 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 840 840 ... ... @@ -846,13 +846,13 @@ 846 846 ==== 2.3.3.9 Battery Output - BAT pin ==== 847 847 848 848 849 -The BAT pin of SN50v3 -LBis connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.777 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 850 850 851 851 852 852 ==== 2.3.3.10 +5V Output ==== 853 853 854 854 855 -SN50v3 -LBwill enable +5V output before all sampling and disable the +5v after all sampling.783 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 856 856 857 857 The 5V output time can be controlled by AT Command. 858 858 ... ... @@ -860,7 +860,7 @@ 860 860 861 861 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 862 862 863 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.791 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 864 864 865 865 866 866 ==== 2.3.3.11 BH1750 Illumination Sensor ==== ... ... @@ -874,40 +874,9 @@ 874 874 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 875 875 876 876 877 -==== 2.3.3.12 PWMMOD ====805 +==== 2.3.3.12 Working MOD ==== 878 878 879 879 880 -* ((( 881 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 882 -))) 883 -* ((( 884 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 885 -))) 886 - 887 - [[image:image-20230817183249-3.png||height="320" width="417"]] 888 - 889 -* ((( 890 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 891 -))) 892 -* ((( 893 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 894 -))) 895 -* ((( 896 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to Class C. Power consumption will not be low. 897 - 898 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 899 - 900 -a) If needs to realtime control output, SN50v3-LB has be run in CLass C and have to use external power source. 901 - 902 -b) If the output duration is more than 30 seconds, bettert to use external power source. 903 - 904 - 905 - 906 -))) 907 - 908 -==== 2.3.3.13 Working MOD ==== 909 - 910 - 911 911 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 912 912 913 913 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -923,8 +923,8 @@ 923 923 * 6: MOD7 924 924 * 7: MOD8 925 925 * 8: MOD9 926 -* 9: MOD10 927 927 824 + 928 928 == 2.4 Payload Decoder file == 929 929 930 930 ... ... @@ -954,6 +954,7 @@ 954 954 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 955 955 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 956 956 854 + 957 957 == 3.2 General Commands == 958 958 959 959 ... ... @@ -970,7 +970,7 @@ 970 970 == 3.3 Commands special design for SN50v3-LB == 971 971 972 972 973 -These commands only valid for S N50v3-LB, as below:871 +These commands only valid for S31x-LB, as below: 974 974 975 975 976 976 === 3.3.1 Set Transmit Interval Time === ... ... @@ -981,7 +981,7 @@ 981 981 (% style="color:blue" %)**AT Command: AT+TDC** 982 982 983 983 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 984 -|=(% style="width: 156px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**882 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 985 985 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 986 986 30000 987 987 OK ... ... @@ -1001,14 +1001,15 @@ 1001 1001 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 1002 1002 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 1003 1003 902 + 1004 1004 === 3.3.2 Get Device Status === 1005 1005 1006 1006 1007 1007 Send a LoRaWAN downlink to ask the device to send its status. 1008 1008 1009 -(% style="color:blue" %)**Downlink Payload: 0x26 01 **908 +(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 1010 1010 1011 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.910 +Sensor will upload Device Status via FPORT=5. See payload section for detail. 1012 1012 1013 1013 1014 1014 === 3.3.3 Set Interrupt Mode === ... ... @@ -1019,7 +1019,7 @@ 1019 1019 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 1020 1020 1021 1021 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1022 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**921 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1023 1023 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1024 1024 0 1025 1025 OK ... ... @@ -1049,6 +1049,7 @@ 1049 1049 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 1050 1050 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 1051 1051 951 + 1052 1052 === 3.3.4 Set Power Output Duration === 1053 1053 1054 1054 ... ... @@ -1063,7 +1063,7 @@ 1063 1063 (% style="color:blue" %)**AT Command: AT+5VT** 1064 1064 1065 1065 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1066 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**966 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1067 1067 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1068 1068 500(default) 1069 1069 OK ... ... @@ -1081,6 +1081,7 @@ 1081 1081 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1082 1082 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1083 1083 984 + 1084 1084 === 3.3.5 Set Weighing parameters === 1085 1085 1086 1086 ... ... @@ -1089,7 +1089,7 @@ 1089 1089 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1090 1090 1091 1091 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1092 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**993 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1093 1093 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1094 1094 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1095 1095 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -1106,6 +1106,7 @@ 1106 1106 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1107 1107 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1108 1108 1010 + 1109 1109 === 3.3.6 Set Digital pulse count value === 1110 1110 1111 1111 ... ... @@ -1116,7 +1116,7 @@ 1116 1116 (% style="color:blue" %)**AT Command: AT+SETCNT** 1117 1117 1118 1118 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1119 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1021 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1120 1120 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1121 1121 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1122 1122 ... ... @@ -1129,6 +1129,7 @@ 1129 1129 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1130 1130 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1131 1131 1034 + 1132 1132 === 3.3.7 Set Workmode === 1133 1133 1134 1134 ... ... @@ -1137,7 +1137,7 @@ 1137 1137 (% style="color:blue" %)**AT Command: AT+MOD** 1138 1138 1139 1139 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1140 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1043 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1141 1141 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1142 1142 OK 1143 1143 ))) ... ... @@ -1153,33 +1153,7 @@ 1153 1153 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1154 1154 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1155 1155 1156 -=== 3.3.8 PWM setting === 1157 1157 1158 - 1159 -Feature: Set the time acquisition unit for PWM input capture. 1160 - 1161 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1162 - 1163 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1164 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1165 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1166 -0(default) 1167 - 1168 -OK 1169 -))) 1170 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)((( 1171 -OK 1172 - 1173 -))) 1174 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK 1175 - 1176 -(% style="color:blue" %)**Downlink Command: 0x0C** 1177 - 1178 -Format: Command Code (0x0C) followed by 1 bytes. 1179 - 1180 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1181 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1182 - 1183 1183 = 4. Battery & Power Consumption = 1184 1184 1185 1185 ... ... @@ -1192,19 +1192,21 @@ 1192 1192 1193 1193 1194 1194 (% class="wikigeneratedid" %) 1195 - **User can change firmware SN50v3-LB to:**1072 +User can change firmware SN50v3-LB to: 1196 1196 1197 1197 * Change Frequency band/ region. 1198 1198 * Update with new features. 1199 1199 * Fix bugs. 1200 1200 1201 - **Firmware and changelog can be downloaded from :****[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**1078 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1202 1202 1203 -**Methods to Update Firmware:** 1204 1204 1205 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1206 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1081 +Methods to Update Firmware: 1207 1207 1083 +* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1084 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1085 + 1086 + 1208 1208 = 6. FAQ = 1209 1209 1210 1210 == 6.1 Where can i find source code of SN50v3-LB? == ... ... @@ -1213,22 +1213,7 @@ 1213 1213 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1214 1214 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1215 1215 1216 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1217 1217 1218 - 1219 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1220 - 1221 - 1222 -== 6.3 How to put several sensors to a SN50v3-LB? == 1223 - 1224 - 1225 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1226 - 1227 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1228 - 1229 -[[image:image-20230810121434-1.png||height="242" width="656"]] 1230 - 1231 - 1232 1232 = 7. Order Info = 1233 1233 1234 1234 ... ... @@ -1252,6 +1252,7 @@ 1252 1252 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1253 1253 * (% style="color:red" %)**NH**(%%): No Hole 1254 1254 1119 + 1255 1255 = 8. Packing Info = 1256 1256 1257 1257 ... ... @@ -1266,6 +1266,7 @@ 1266 1266 * Package Size / pcs : cm 1267 1267 * Weight / pcs : g 1268 1268 1134 + 1269 1269 = 9. Support = 1270 1270 1271 1271
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.9 KB - Content