<
From version < 74.8 >
edited by Mengting Qiu
on 2023/12/11 20:00
To version < 35.1 >
edited by Saxer Lin
on 2023/05/13 11:12
>
Change comment: Uploaded new attachment "image-20230513111255-9.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Saxer
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
3 3  
4 4  
5 5  
... ... @@ -16,20 +16,23 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
21 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
22 +
23 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
29 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
32 +
30 30  == 1.2 ​Features ==
31 31  
32 -
33 33  * LoRaWAN 1.0.3 Class A
34 34  * Ultra-low power consumption
35 35  * Open-Source hardware/software
... ... @@ -42,7 +42,6 @@
42 42  
43 43  == 1.3 Specification ==
44 44  
45 -
46 46  (% style="color:#037691" %)**Common DC Characteristics:**
47 47  
48 48  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -79,7 +79,6 @@
79 79  
80 80  == 1.4 Sleep mode and working mode ==
81 81  
82 -
83 83  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84 84  
85 85  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -122,7 +122,7 @@
122 122  == 1.7 Pin Definitions ==
123 123  
124 124  
125 -[[image:image-20230610163213-1.png||height="404" width="699"]]
125 +[[image:image-20230511203450-2.png||height="443" width="785"]]
126 126  
127 127  
128 128  == 1.8 Mechanical ==
... ... @@ -135,9 +135,8 @@
135 135  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136 136  
137 137  
138 -== 1.9 Hole Option ==
138 +== Hole Option ==
139 139  
140 -
141 141  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142 142  
143 143  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -150,7 +150,7 @@
150 150  == 2.1 How it works ==
151 151  
152 152  
153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154 154  
155 155  
156 156  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -158,7 +158,7 @@
158 158  
159 159  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160 160  
161 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 162  
163 163  
164 164  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -207,7 +207,7 @@
207 207  === 2.3.1 Device Status, FPORT~=5 ===
208 208  
209 209  
210 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
211 211  
212 212  The Payload format is as below.
213 213  
... ... @@ -215,44 +215,44 @@
215 215  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 216  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 217  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219 219  
220 220  Example parse in TTNv3
221 221  
222 222  
223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
224 224  
225 225  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226 226  
227 227  (% style="color:#037691" %)**Frequency Band**:
228 228  
229 -0x01: EU868
228 +*0x01: EU868
230 230  
231 -0x02: US915
230 +*0x02: US915
232 232  
233 -0x03: IN865
232 +*0x03: IN865
234 234  
235 -0x04: AU915
234 +*0x04: AU915
236 236  
237 -0x05: KZ865
236 +*0x05: KZ865
238 238  
239 -0x06: RU864
238 +*0x06: RU864
240 240  
241 -0x07: AS923
240 +*0x07: AS923
242 242  
243 -0x08: AS923-1
242 +*0x08: AS923-1
244 244  
245 -0x09: AS923-2
244 +*0x09: AS923-2
246 246  
247 -0x0a: AS923-3
246 +*0x0a: AS923-3
248 248  
249 -0x0b: CN470
248 +*0x0b: CN470
250 250  
251 -0x0c: EU433
250 +*0x0c: EU433
252 252  
253 -0x0d: KR920
252 +*0x0d: KR920
254 254  
255 -0x0e: MA869
254 +*0x0e: MA869
256 256  
257 257  
258 258  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -276,199 +276,186 @@
276 276  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 277  
278 278  
279 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280 280  
281 281  For example:
282 282  
283 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
282 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 284  
285 285  
286 286  (% style="color:red" %) **Important Notice:**
287 287  
288 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
288 +1. All modes share the same Payload Explanation from HERE.
289 +1. By default, the device will send an uplink message every 20 minutes.
289 289  
290 -2. All modes share the same Payload Explanation from HERE.
291 -
292 -3. By default, the device will send an uplink message every 20 minutes.
293 -
294 -
295 295  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
296 296  
297 -
298 298  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
299 299  
300 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
301 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
302 -|Value|Bat|(% style="width:191px" %)(((
303 -Temperature(DS18B20)(PC13)
304 -)))|(% style="width:78px" %)(((
305 -ADC(PA4)
295 +|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2**
296 +|**Value**|Bat|(((
297 +Temperature(DS18B20)
298 +
299 +(PC13)
300 +)))|(((
301 +ADC
302 +
303 +(PA4)
306 306  )))|(% style="width:216px" %)(((
307 -Digital in(PB15)&Digital Interrupt(PA8)
308 -)))|(% style="width:308px" %)(((
309 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
310 -)))|(% style="width:154px" %)(((
311 -Humidity(SHT20 or SHT31)
312 -)))
305 +Digital in & Digital Interrupt
313 313  
307 +
308 +)))|(% style="width:342px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|(% style="width:171px" %)Humidity(SHT20 or SHT31)
309 +
314 314  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
315 315  
316 316  
317 317  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
318 318  
319 -
320 320  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
321 321  
322 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
323 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
324 -|Value|BAT|(% style="width:196px" %)(((
325 -Temperature(DS18B20)(PC13)
326 -)))|(% style="width:87px" %)(((
327 -ADC(PA4)
328 -)))|(% style="width:189px" %)(((
329 -Digital in(PB15) & Digital Interrupt(PA8)
330 -)))|(% style="width:208px" %)(((
331 -Distance measure by: 1) LIDAR-Lite V3HP
332 -Or 2) Ultrasonic Sensor
333 -)))|(% style="width:117px" %)Reserved
317 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
318 +|**Value**|BAT|(((
319 +Temperature(DS18B20)
320 +)))|ADC|Digital in & Digital Interrupt|(((
321 +Distance measure by:
322 +1) LIDAR-Lite V3HP
323 +Or
324 +2) Ultrasonic Sensor
325 +)))|Reserved
334 334  
335 335  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
336 336  
329 +**Connection of LIDAR-Lite V3HP:**
337 337  
338 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
339 -
340 340  [[image:image-20230512173758-5.png||height="563" width="712"]]
341 341  
333 +**Connection to Ultrasonic Sensor:**
342 342  
343 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
344 -
345 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
346 -
347 347  [[image:image-20230512173903-6.png||height="596" width="715"]]
348 348  
349 -
350 350  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
351 351  
352 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
353 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
354 -|Value|BAT|(% style="width:183px" %)(((
355 -Temperature(DS18B20)(PC13)
356 -)))|(% style="width:173px" %)(((
357 -Digital in(PB15) & Digital Interrupt(PA8)
358 -)))|(% style="width:84px" %)(((
359 -ADC(PA4)
360 -)))|(% style="width:323px" %)(((
339 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2**
340 +|**Value**|BAT|(((
341 +Temperature(DS18B20)
342 +)))|Digital in & Digital Interrupt|ADC|(((
361 361  Distance measure by:1)TF-Mini plus LiDAR
362 -Or 2) TF-Luna LiDAR
363 -)))|(% style="width:188px" %)Distance signal  strength
344 +Or 
345 +2) TF-Luna LiDAR
346 +)))|Distance signal  strength
364 364  
365 365  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
366 366  
367 -
368 368  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
369 369  
370 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
352 +Need to remove R3 and R4 resistors to get low power.
371 371  
372 372  [[image:image-20230512180609-7.png||height="555" width="802"]]
373 373  
374 -
375 375  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
376 376  
377 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
358 +Need to remove R3 and R4 resistors to get low power.
378 378  
379 -[[image:image-20230610170047-1.png||height="452" width="799"]]
360 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]]
380 380  
362 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption.
381 381  
364 +
382 382  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
383 383  
384 -
385 385  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
386 386  
387 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
388 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
369 +|=(((
389 389  **Size(bytes)**
390 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
391 -|Value|(% style="width:68px" %)(((
392 -ADC1(PA4)
371 +)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 318px;" %)2|=(% style="width: 172px;" %)2|=1
372 +|**Value**|(% style="width:68px" %)(((
373 +ADC
374 +
375 +(PA0)
393 393  )))|(% style="width:75px" %)(((
394 -ADC2(PA5)
395 -)))|(((
396 -ADC3(PA8)
397 -)))|(((
398 -Digital Interrupt(PB15)
399 -)))|(% style="width:304px" %)(((
400 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
401 -)))|(% style="width:163px" %)(((
402 -Humidity(SHT20 or SHT31)
403 -)))|(% style="width:53px" %)Bat
377 +ADC2
404 404  
405 -[[image:image-20230513110214-6.png]]
379 +(PA1)
380 +)))|ADC3 (PA4)|(((
381 +Digital in(PA12)&Digital Interrupt1(PB14)
382 +)))|(% style="width:318px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|(% style="width:172px" %)Humidity(SHT20 or SHT31)|Bat
406 406  
384 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]]
407 407  
386 +
408 408  ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
409 409  
389 +[[image:image-20230512170701-3.png||height="565" width="743"]]
410 410  
411 411  This mode has total 11 bytes. As shown below:
412 412  
413 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
414 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
415 -|Value|BAT|(% style="width:186px" %)(((
416 -Temperature1(DS18B20)(PC13)
393 +(% style="width:1017px" %)
394 +|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
395 +|**Value**|BAT|(% style="width:186px" %)(((
396 +Temperature1(DS18B20)
397 +(PC13)
417 417  )))|(% style="width:82px" %)(((
418 -ADC(PA4)
399 +ADC
400 +
401 +(PA4)
419 419  )))|(% style="width:210px" %)(((
420 -Digital in(PB15) & Digital Interrupt(PA8) 
403 +Digital in & Digital Interrupt
404 +
405 +(PB15)  &  (PA8) 
421 421  )))|(% style="width:191px" %)Temperature2(DS18B20)
422 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
407 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
408 +(PB8)
423 423  
424 424  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
425 425  
426 426  
427 -[[image:image-20230513134006-1.png||height="559" width="736"]]
428 -
429 -
430 430  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
431 431  
432 -
433 433  [[image:image-20230512164658-2.png||height="532" width="729"]]
434 434  
435 435  Each HX711 need to be calibrated before used. User need to do below two steps:
436 436  
437 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
438 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
419 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
420 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
439 439  1. (((
440 440  Weight has 4 bytes, the unit is g.
441 -
442 -
443 -
444 444  )))
445 445  
446 446  For example:
447 447  
448 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
427 +**AT+GETSENSORVALUE =0**
449 449  
450 450  Response:  Weight is 401 g
451 451  
452 452  Check the response of this command and adjust the value to match the real value for thing.
453 453  
454 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
455 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
433 +(% style="width:982px" %)
434 +|=(((
456 456  **Size(bytes)**
457 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
458 -|Value|BAT|(% style="width:193px" %)(((
459 -Temperature(DS18B20)(PC13)
460 -)))|(% style="width:85px" %)(((
461 -ADC(PA4)
462 -)))|(% style="width:186px" %)(((
463 -Digital in(PB15) & Digital Interrupt(PA8)
464 -)))|(% style="width:100px" %)Weight
436 +)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4**
437 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(% style="width:282px" %)(((
438 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
465 465  
440 +(PC13)
441 +
442 +
443 +)))|(% style="width:119px" %)(((
444 +[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]
445 +
446 +(PA4)
447 +)))|(% style="width:279px" %)(((
448 +[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]
449 +
450 +(PB15)  &  (PA8)
451 +)))|(% style="width:106px" %)Weight
452 +
466 466  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
467 467  
468 468  
469 469  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
470 470  
471 -
472 472  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
473 473  
474 474  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -475,185 +475,86 @@
475 475  
476 476  [[image:image-20230512181814-9.png||height="543" width="697"]]
477 477  
464 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen.
478 478  
479 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
466 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4**
467 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(((
468 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
469 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count
480 480  
481 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
482 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
483 -|Value|BAT|(% style="width:256px" %)(((
484 -Temperature(DS18B20)(PC13)
485 -)))|(% style="width:108px" %)(((
486 -ADC(PA4)
487 -)))|(% style="width:126px" %)(((
488 -Digital in(PB15)
489 -)))|(% style="width:145px" %)(((
490 -Count(PA8)
491 -)))
492 -
493 493  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
494 494  
495 495  
496 496  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
497 497  
476 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]]
498 498  
499 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
500 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
478 +|=(((
501 501  **Size(bytes)**
502 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
503 -|Value|BAT|(% style="width:188px" %)(((
504 -Temperature(DS18B20)
505 -(PC13)
506 -)))|(% style="width:83px" %)(((
507 -ADC(PA5)
508 -)))|(% style="width:184px" %)(((
509 -Digital Interrupt1(PA8)
510 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
480 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2
481 +|**Value**|BAT|Temperature(DS18B20)|ADC|(((
482 +Digital in(PA12)&Digital Interrupt1(PB14)
483 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved
511 511  
512 -[[image:image-20230513111203-7.png||height="324" width="975"]]
513 -
514 -
515 515  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
516 516  
517 -
518 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
519 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
487 +|=(((
520 520  **Size(bytes)**
521 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
522 -|Value|BAT|(% style="width:207px" %)(((
523 -Temperature(DS18B20)
524 -(PC13)
525 -)))|(% style="width:94px" %)(((
526 -ADC1(PA4)
527 -)))|(% style="width:198px" %)(((
528 -Digital Interrupt(PB15)
529 -)))|(% style="width:84px" %)(((
530 -ADC2(PA5)
531 -)))|(% style="width:82px" %)(((
532 -ADC3(PA8)
489 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2
490 +|**Value**|BAT|Temperature(DS18B20)|(((
491 +ADC1(PA0)
492 +)))|(((
493 +Digital in
494 +& Digital Interrupt(PB14)
495 +)))|(((
496 +ADC2(PA1)
497 +)))|(((
498 +ADC3(PA4)
533 533  )))
534 534  
535 -[[image:image-20230513111231-8.png||height="335" width="900"]]
501 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]]
536 536  
537 537  
538 538  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
539 539  
540 -
541 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
542 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
506 +|=(((
543 543  **Size(bytes)**
544 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
545 -|Value|BAT|(((
546 -Temperature
547 -(DS18B20)(PC13)
508 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4
509 +|**Value**|BAT|(((
510 +Temperature1(PB3)
548 548  )))|(((
549 -Temperature2
550 -(DS18B20)(PB9)
512 +Temperature2(PA9)
551 551  )))|(((
552 -Digital Interrupt
553 -(PB15)
554 -)))|(% style="width:193px" %)(((
555 -Temperature3
556 -(DS18B20)(PB8)
557 -)))|(% style="width:78px" %)(((
558 -Count1(PA8)
559 -)))|(% style="width:78px" %)(((
560 -Count2(PA4)
514 +Digital in
515 +& Digital Interrupt(PA4)
516 +)))|(((
517 +Temperature3(PA10)
518 +)))|(((
519 +Count1(PB14)
520 +)))|(((
521 +Count2(PB15)
561 561  )))
562 562  
563 -[[image:image-20230513111255-9.png||height="341" width="899"]]
524 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]]
564 564  
565 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
526 +**The newly added AT command is issued correspondingly:**
566 566  
567 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
528 +**~ AT+INTMOD1** ** PB14**  pin:  Corresponding downlink:  **06 00 00 xx**
568 568  
569 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
530 +**~ AT+INTMOD2**  **PB15** pin:  Corresponding downlink:**  06 00 01 xx**
570 570  
571 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
532 +**~ AT+INTMOD3**  **PA4**  pin:  Corresponding downlink:  ** 06 00 02 xx**
572 572  
534 +**AT+SETCNT=aa,bb** 
573 573  
574 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
536 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb
575 575  
576 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
538 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb
577 577  
578 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
579 579  
580 580  
581 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
582 -
583 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
584 -
585 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
586 -
587 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
588 -
589 -
590 -===== 2.3.2.10.a  Uplink, PWM input capture =====
591 -
592 -
593 -[[image:image-20230817172209-2.png||height="439" width="683"]]
594 -
595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
596 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
597 -|Value|Bat|(% style="width:191px" %)(((
598 -Temperature(DS18B20)(PC13)
599 -)))|(% style="width:78px" %)(((
600 -ADC(PA4)
601 -)))|(% style="width:135px" %)(((
602 -PWM_Setting
603 -
604 -&Digital Interrupt(PA8)
605 -)))|(% style="width:70px" %)(((
606 -Pulse period
607 -)))|(% style="width:89px" %)(((
608 -Duration of high level
609 -)))
610 -
611 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
612 -
613 -
614 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
615 -
616 -**Frequency:**
617 -
618 -(% class="MsoNormal" %)
619 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
620 -
621 -(% class="MsoNormal" %)
622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
623 -
624 -
625 -(% class="MsoNormal" %)
626 -**Duty cycle:**
627 -
628 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
629 -
630 -[[image:image-20230818092200-1.png||height="344" width="627"]]
631 -
632 -
633 -===== 2.3.2.10.b  Downlink, PWM output =====
634 -
635 -
636 -[[image:image-20230817173800-3.png||height="412" width="685"]]
637 -
638 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
639 -
640 - xx xx xx is the output frequency, the unit is HZ.
641 -
642 - yy is the duty cycle of the output, the unit is %.
643 -
644 - zz zz is the time delay of the output, the unit is ms.
645 -
646 -
647 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
648 -
649 -The oscilloscope displays as follows:
650 -
651 -[[image:image-20230817173858-5.png||height="694" width="921"]]
652 -
653 -
654 654  === 2.3.3  ​Decode payload ===
655 655  
656 -
657 657  While using TTN V3 network, you can add the payload format to decode the payload.
658 658  
659 659  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -660,14 +660,13 @@
660 660  
661 661  The payload decoder function for TTN V3 are here:
662 662  
663 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
550 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
664 664  
665 665  
666 666  ==== 2.3.3.1 Battery Info ====
667 667  
555 +Check the battery voltage for SN50v3.
668 668  
669 -Check the battery voltage for SN50v3-LB.
670 -
671 671  Ex1: 0x0B45 = 2885mV
672 672  
673 673  Ex2: 0x0B49 = 2889mV
... ... @@ -675,18 +675,16 @@
675 675  
676 676  ==== 2.3.3.2  Temperature (DS18B20) ====
677 677  
564 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
678 678  
679 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
566 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
680 680  
681 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
568 +**Connection:**
682 682  
683 -(% style="color:blue" %)**Connection:**
684 -
685 685  [[image:image-20230512180718-8.png||height="538" width="647"]]
686 686  
572 +**Example**:
687 687  
688 -(% style="color:blue" %)**Example**:
689 -
690 690  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
691 691  
692 692  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -696,7 +696,6 @@
696 696  
697 697  ==== 2.3.3.3 Digital Input ====
698 698  
699 -
700 700  The digital input for pin PB15,
701 701  
702 702  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -704,65 +704,51 @@
704 704  
705 705  (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
706 706  (((
707 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
708 -
709 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
710 -
711 -
590 +Note:The maximum voltage input supports 3.6V.
712 712  )))
713 713  
593 +(% class="wikigeneratedid" %)
714 714  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
715 715  
596 +The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
716 716  
717 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
718 -
719 719  When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
720 720  
721 721  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
722 722  
723 723  
724 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
725 -
726 -
727 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
728 -
729 -[[image:image-20230811113449-1.png||height="370" width="608"]]
730 -
731 731  ==== 2.3.3.5 Digital Interrupt ====
732 732  
605 +Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
733 733  
734 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
607 +**~ Interrupt connection method:**
735 735  
736 -(% style="color:blue" %)** Interrupt connection method:**
609 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]]
737 737  
738 -[[image:image-20230513105351-5.png||height="147" width="485"]]
611 +**Example to use with door sensor :**
739 739  
740 -
741 -(% style="color:blue" %)**Example to use with door sensor :**
742 -
743 743  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
744 744  
745 745  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
746 746  
747 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
617 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window.
748 748  
619 +**~ Below is the installation example:**
749 749  
750 -(% style="color:blue" %)**Below is the installation example:**
621 +Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows:
751 751  
752 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
753 -
754 754  * (((
755 -One pin to SN50v3-LB's PA8 pin
624 +One pin to LSN50's PB14 pin
756 756  )))
757 757  * (((
758 -The other pin to SN50v3-LB's VDD pin
627 +The other pin to LSN50's VCC pin
759 759  )))
760 760  
761 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
630 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage.
762 762  
763 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
632 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
764 764  
765 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
634 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored.
766 766  
767 767  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
768 768  
... ... @@ -772,33 +772,29 @@
772 772  
773 773  The command is:
774 774  
775 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
644 +**AT+INTMOD=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
776 776  
777 777  Below shows some screen captures in TTN V3:
778 778  
779 779  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
780 780  
650 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
781 781  
782 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
783 -
784 784  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
785 785  
786 786  
787 787  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
788 788  
789 -
790 790  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
791 791  
792 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
659 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor.
793 793  
794 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
661 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference.
795 795  
796 -
797 797  Below is the connection to SHT20/ SHT31. The connection is as below:
798 798  
799 -[[image:image-20230610170152-2.png||height="501" width="846"]]
665 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]]
800 800  
801 -
802 802  The device will be able to get the I2C sensor data now and upload to IoT Server.
803 803  
804 804  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
... ... @@ -816,26 +816,20 @@
816 816  
817 817  ==== 2.3.3.7  ​Distance Reading ====
818 818  
684 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
819 819  
820 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
821 821  
822 -
823 823  ==== 2.3.3.8 Ultrasonic Sensor ====
824 824  
825 -
826 826  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
827 827  
828 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
691 +The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
829 829  
830 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
831 -
832 832  The picture below shows the connection:
833 833  
834 -[[image:image-20230512173903-6.png||height="596" width="715"]]
835 835  
696 +Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
836 836  
837 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
838 -
839 839  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
840 840  
841 841  **Example:**
... ... @@ -842,72 +842,50 @@
842 842  
843 843  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
844 844  
704 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]]
845 845  
846 -==== 2.3.3.9  Battery Output - BAT pin ====
706 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]]
847 847  
708 +You can see the serial output in ULT mode as below:
848 848  
849 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
710 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]]
850 850  
712 +**In TTN V3 server:**
851 851  
852 -==== 2.3.3.10  +5V Output ====
714 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]]
853 853  
716 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]]
854 854  
855 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
718 +==== 2.3.3.9  Battery Output - BAT pin ====
856 856  
857 -The 5V output time can be controlled by AT Command.
720 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
858 858  
859 -(% style="color:blue" %)**AT+5VT=1000**
860 860  
861 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
723 +==== 2.3.3.10  +5V Output ====
862 862  
863 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
725 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
864 864  
727 +The 5V output time can be controlled by AT Command.
865 865  
866 -==== 2.3.3.11  BH1750 Illumination Sensor ====
729 +**AT+5VT=1000**
867 867  
731 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
868 868  
869 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
733 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
870 870  
871 -[[image:image-20230512172447-4.png||height="416" width="712"]]
872 872  
873 873  
874 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
737 +==== 2.3.3.11  BH1750 Illumination Sensor ====
875 875  
739 +MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
876 876  
877 -==== 2.3.3.12  PWM MOD ====
741 +[[image:image-20230512172447-4.png||height="593" width="1015"]]
878 878  
743 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]]
879 879  
880 -* (((
881 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
882 -)))
883 -* (((
884 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
885 -)))
886 886  
887 - [[image:image-20230817183249-3.png||height="320" width="417"]]
746 +==== 2.3.3.12  Working MOD ====
888 888  
889 -* (((
890 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
891 -)))
892 -* (((
893 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
894 -)))
895 -* (((
896 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to Class C. Power consumption will not be low.
897 -
898 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
899 -
900 -a) If needs to realtime control output, SN50v3-LB has be run in CLass C and have to use external power source.
901 -
902 -b) If the output duration is more than 30 seconds, bettert to use external power source. 
903 -
904 -
905 -
906 -)))
907 -
908 -==== 2.3.3.13  Working MOD ====
909 -
910 -
911 911  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
912 912  
913 913  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -920,10 +920,6 @@
920 920  * 3: MOD4
921 921  * 4: MOD5
922 922  * 5: MOD6
923 -* 6: MOD7
924 -* 7: MOD8
925 -* 8: MOD9
926 -* 9: MOD10
927 927  
928 928  == 2.4 Payload Decoder file ==
929 929  
... ... @@ -932,9 +932,10 @@
932 932  
933 933  In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
934 934  
935 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
768 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
936 936  
937 937  
771 +
938 938  == 2.5 Frequency Plans ==
939 939  
940 940  
... ... @@ -970,7 +970,7 @@
970 970  == 3.3 Commands special design for SN50v3-LB ==
971 971  
972 972  
973 -These commands only valid for SN50v3-LB, as below:
807 +These commands only valid for S31x-LB, as below:
974 974  
975 975  
976 976  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -981,7 +981,7 @@
981 981  (% style="color:blue" %)**AT Command: AT+TDC**
982 982  
983 983  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
984 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
818 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
985 985  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
986 986  30000
987 987  OK
... ... @@ -1003,29 +1003,28 @@
1003 1003  
1004 1004  === 3.3.2 Get Device Status ===
1005 1005  
840 +Send a LoRaWAN downlink to ask device send Alarm settings.
1006 1006  
1007 -Send a LoRaWAN downlink to ask the device to send its status.
842 +(% style="color:blue" %)**Downlink Payload **(%%)0x26 01
1008 1008  
1009 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
844 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
1010 1010  
1011 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
1012 1012  
847 +=== 3.3.7 Set Interrupt Mode ===
1013 1013  
1014 -=== 3.3.3 Set Interrupt Mode ===
1015 1015  
1016 -
1017 1017  Feature, Set Interrupt mode for GPIO_EXIT.
1018 1018  
1019 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
852 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1020 1020  
1021 1021  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1022 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1023 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
855 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
856 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1024 1024  0
1025 1025  OK
1026 1026  the mode is 0 =Disable Interrupt
1027 1027  )))
1028 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
861 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
1029 1029  Set Transmit Interval
1030 1030  0. (Disable Interrupt),
1031 1031  ~1. (Trigger by rising and falling edge)
... ... @@ -1032,11 +1032,6 @@
1032 1032  2. (Trigger by falling edge)
1033 1033  3. (Trigger by rising edge)
1034 1034  )))|(% style="width:157px" %)OK
1035 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1036 -Set Transmit Interval
1037 -trigger by rising edge.
1038 -)))|(% style="width:157px" %)OK
1039 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1040 1040  
1041 1041  (% style="color:blue" %)**Downlink Command: 0x06**
1042 1042  
... ... @@ -1044,142 +1044,9 @@
1044 1044  
1045 1045  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1046 1046  
1047 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1048 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1049 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1050 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
875 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
876 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1051 1051  
1052 -=== 3.3.4 Set Power Output Duration ===
1053 -
1054 -
1055 -Control the output duration 5V . Before each sampling, device will
1056 -
1057 -~1. first enable the power output to external sensor,
1058 -
1059 -2. keep it on as per duration, read sensor value and construct uplink payload
1060 -
1061 -3. final, close the power output.
1062 -
1063 -(% style="color:blue" %)**AT Command: AT+5VT**
1064 -
1065 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1066 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1067 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1068 -500(default)
1069 -OK
1070 -)))
1071 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1072 -Close after a delay of 1000 milliseconds.
1073 -)))|(% style="width:157px" %)OK
1074 -
1075 -(% style="color:blue" %)**Downlink Command: 0x07**
1076 -
1077 -Format: Command Code (0x07) followed by 2 bytes.
1078 -
1079 -The first and second bytes are the time to turn on.
1080 -
1081 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1082 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1083 -
1084 -=== 3.3.5 Set Weighing parameters ===
1085 -
1086 -
1087 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1088 -
1089 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1090 -
1091 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1092 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1093 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1094 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1095 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1096 -
1097 -(% style="color:blue" %)**Downlink Command: 0x08**
1098 -
1099 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1100 -
1101 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1102 -
1103 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1104 -
1105 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1106 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1107 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1108 -
1109 -=== 3.3.6 Set Digital pulse count value ===
1110 -
1111 -
1112 -Feature: Set the pulse count value.
1113 -
1114 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1115 -
1116 -(% style="color:blue" %)**AT Command: AT+SETCNT**
1117 -
1118 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1119 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1120 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1121 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1122 -
1123 -(% style="color:blue" %)**Downlink Command: 0x09**
1124 -
1125 -Format: Command Code (0x09) followed by 5 bytes.
1126 -
1127 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1128 -
1129 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1130 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1131 -
1132 -=== 3.3.7 Set Workmode ===
1133 -
1134 -
1135 -Feature: Switch working mode.
1136 -
1137 -(% style="color:blue" %)**AT Command: AT+MOD**
1138 -
1139 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1140 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1141 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1142 -OK
1143 -)))
1144 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1145 -OK
1146 -Attention:Take effect after ATZ
1147 -)))
1148 -
1149 -(% style="color:blue" %)**Downlink Command: 0x0A**
1150 -
1151 -Format: Command Code (0x0A) followed by 1 bytes.
1152 -
1153 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1154 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1155 -
1156 -=== 3.3.8 PWM setting ===
1157 -
1158 -
1159 -Feature: Set the time acquisition unit for PWM input capture.
1160 -
1161 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1162 -
1163 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1164 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1165 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1166 -0(default)
1167 -
1168 -OK
1169 -)))
1170 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1171 -OK
1172 -
1173 -)))
1174 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1175 -
1176 -(% style="color:blue" %)**Downlink Command: 0x0C**
1177 -
1178 -Format: Command Code (0x0C) followed by 1 bytes.
1179 -
1180 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1181 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1182 -
1183 1183  = 4. Battery & Power Consumption =
1184 1184  
1185 1185  
... ... @@ -1192,43 +1192,28 @@
1192 1192  
1193 1193  
1194 1194  (% class="wikigeneratedid" %)
1195 -**User can change firmware SN50v3-LB to:**
890 +User can change firmware SN50v3-LB to:
1196 1196  
1197 1197  * Change Frequency band/ region.
1198 1198  * Update with new features.
1199 1199  * Fix bugs.
1200 1200  
1201 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
896 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1202 1202  
1203 -**Methods to Update Firmware:**
1204 1204  
1205 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1206 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
899 +Methods to Update Firmware:
1207 1207  
901 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
902 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
903 +
1208 1208  = 6. FAQ =
1209 1209  
1210 1210  == 6.1 Where can i find source code of SN50v3-LB? ==
1211 1211  
1212 -
1213 1213  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1214 1214  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1215 1215  
1216 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1217 1217  
1218 -
1219 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1220 -
1221 -
1222 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1223 -
1224 -
1225 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1226 -
1227 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1228 -
1229 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1230 -
1231 -
1232 1232  = 7. Order Info =
1233 1233  
1234 1234  
... ... @@ -1254,7 +1254,6 @@
1254 1254  
1255 1255  = 8. ​Packing Info =
1256 1256  
1257 -
1258 1258  (% style="color:#037691" %)**Package Includes**:
1259 1259  
1260 1260  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1270,5 +1270,4 @@
1270 1270  
1271 1271  
1272 1272  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1273 -
1274 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
952 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0