<
From version < 74.7 >
edited by Xiaoling
on 2023/09/26 08:52
To version < 87.3 >
edited by Xiaoling
on 2024/01/03 10:44
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Content
... ... @@ -1,10 +1,15 @@
1 +
2 +
1 1  (% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
4 +[[image:image-20240103095714-2.png]]
3 3  
4 4  
5 5  
6 -**Table of Contents:**
7 7  
9 +
10 +
11 +**Table of Contents:**
12 +
8 8  {{toc/}}
9 9  
10 10  
... ... @@ -14,18 +14,18 @@
14 14  
15 15  = 1. Introduction =
16 16  
17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
18 18  
19 19  
20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
24 -(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
25 25  
26 -(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
27 27  
28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 30  == 1.2 ​Features ==
31 31  
... ... @@ -88,7 +88,7 @@
88 88  == 1.5 Button & LEDs ==
89 89  
90 90  
91 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
96 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
92 92  
93 93  
94 94  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -127,14 +127,19 @@
127 127  
128 128  == 1.8 Mechanical ==
129 129  
135 +=== 1.8.1 for LB version ===
130 130  
131 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
132 132  
133 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
138 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134 134  
140 +
135 135  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136 136  
143 +=== 1.8.2 for LS version ===
137 137  
145 +[[image:image-20231231203439-3.png||height="385" width="886"]]
146 +
147 +
138 138  == 1.9 Hole Option ==
139 139  
140 140  
... ... @@ -580,6 +580,7 @@
580 580  
581 581  ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
582 582  
593 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
583 583  
584 584  In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
585 585  
... ... @@ -591,8 +591,8 @@
591 591  
592 592  [[image:image-20230817172209-2.png||height="439" width="683"]]
593 593  
594 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
595 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
605 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
606 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
596 596  |Value|Bat|(% style="width:191px" %)(((
597 597  Temperature(DS18B20)(PC13)
598 598  )))|(% style="width:78px" %)(((
... ... @@ -599,7 +599,6 @@
599 599  ADC(PA4)
600 600  )))|(% style="width:135px" %)(((
601 601  PWM_Setting
602 -
603 603  &Digital Interrupt(PA8)
604 604  )))|(% style="width:70px" %)(((
605 605  Pulse period
... ... @@ -628,10 +628,37 @@
628 628  
629 629  [[image:image-20230818092200-1.png||height="344" width="627"]]
630 630  
641 +===== 2.3.2.10.b  Uplink, PWM output =====
631 631  
632 -===== 2.3.2.10.b  Downlink, PWM output =====
643 +[[image:image-20230817172209-2.png||height="439" width="683"]]
633 633  
645 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
634 634  
647 +a is the time delay of the output, the unit is ms.
648 +
649 +b is the output frequency, the unit is HZ.
650 +
651 +c is the duty cycle of the output, the unit is %.
652 +
653 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
654 +
655 +aa is the time delay of the output, the unit is ms.
656 +
657 +bb is the output frequency, the unit is HZ.
658 +
659 +cc is the duty cycle of the output, the unit is %.
660 +
661 +
662 +For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
663 +
664 +The oscilloscope displays as follows:
665 +
666 +[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
667 +
668 +
669 +===== 2.3.2.10.c  Downlink, PWM output =====
670 +
671 +
635 635  [[image:image-20230817173800-3.png||height="412" width="685"]]
636 636  
637 637  Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
... ... @@ -890,8 +890,17 @@
890 890  )))
891 891  * (((
892 892  Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
930 +)))
931 +* (((
932 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
893 893  
934 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
894 894  
936 +a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
937 +
938 +b) If the output duration is more than 30 seconds, better to use external power source. 
939 +
940 +
895 895  
896 896  )))
897 897  
... ... @@ -1143,25 +1143,26 @@
1143 1143  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1144 1144  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1145 1145  
1192 +(% id="H3.3.8PWMsetting" %)
1146 1146  === 3.3.8 PWM setting ===
1147 1147  
1148 1148  
1149 -Feature: Set the time acquisition unit for PWM input capture.
1196 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1150 1150  
1151 1151  (% style="color:blue" %)**AT Command: AT+PWMSET**
1152 1152  
1153 1153  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1154 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1155 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1201 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1202 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1156 1156  0(default)
1157 1157  
1158 1158  OK
1159 1159  )))
1160 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1207 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1161 1161  OK
1162 1162  
1163 1163  )))
1164 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1211 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1165 1165  
1166 1166  (% style="color:blue" %)**Downlink Command: 0x0C**
1167 1167  
... ... @@ -1170,9 +1170,73 @@
1170 1170  * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1171 1171  * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1172 1172  
1173 -= 4. Battery & Power Consumption =
1220 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1174 1174  
1222 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1175 1175  
1224 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1225 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1226 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1227 +0,0,0(default)
1228 +
1229 +OK
1230 +)))
1231 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1232 +OK
1233 +
1234 +)))
1235 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1236 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1237 +
1238 +
1239 +)))|(% style="width:137px" %)(((
1240 +OK
1241 +)))
1242 +
1243 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1244 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1245 +|(% colspan="1" rowspan="3" style="width:155px" %)(((
1246 +AT+PWMOUT=a,b,c
1247 +
1248 +
1249 +)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1250 +Set PWM output time, output frequency and output duty cycle.
1251 +
1252 +(((
1253 +
1254 +)))
1255 +
1256 +(((
1257 +
1258 +)))
1259 +)))|(% style="width:242px" %)(((
1260 +a: Output time (unit: seconds)
1261 +
1262 +The value ranges from 0 to 65535.
1263 +
1264 +When a=65535, PWM will always output.
1265 +)))
1266 +|(% style="width:242px" %)(((
1267 +b: Output frequency (unit: HZ)
1268 +)))
1269 +|(% style="width:242px" %)(((
1270 +c: Output duty cycle (unit: %)
1271 +
1272 +The value ranges from 0 to 100.
1273 +)))
1274 +
1275 +(% style="color:blue" %)**Downlink Command: 0x0B01**
1276 +
1277 +Format: Command Code (0x0B01) followed by 6 bytes.
1278 +
1279 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1280 +
1281 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1282 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1283 +
1284 += 4. Battery & Power Cons =
1285 +
1286 +
1176 1176  SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1177 1177  
1178 1178  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
image-20231213102404-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +230.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0