Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 7 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Saxer - Content
-
... ... @@ -19,7 +19,7 @@ 19 19 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 ... ... @@ -27,6 +27,7 @@ 27 27 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 + 30 30 == 1.2 Features == 31 31 32 32 ... ... @@ -40,6 +40,8 @@ 40 40 * Downlink to change configure 41 41 * 8500mAh Battery for long term use 42 42 44 + 45 + 43 43 == 1.3 Specification == 44 44 45 45 ... ... @@ -77,6 +77,8 @@ 77 77 * Sleep Mode: 5uA @ 3.3v 78 78 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 79 79 83 + 84 + 80 80 == 1.4 Sleep mode and working mode == 81 81 82 82 ... ... @@ -104,6 +104,8 @@ 104 104 ))) 105 105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 106 106 112 + 113 + 107 107 == 1.6 BLE connection == 108 108 109 109 ... ... @@ -578,78 +578,6 @@ 578 578 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 579 579 580 580 581 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 582 - 583 - 584 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 585 - 586 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 587 - 588 - 589 -===== 2.3.2.10.a Uplink, PWM input capture ===== 590 - 591 - 592 -[[image:image-20230817172209-2.png||height="439" width="683"]] 593 - 594 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 595 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 596 -|Value|Bat|(% style="width:191px" %)((( 597 -Temperature(DS18B20)(PC13) 598 -)))|(% style="width:78px" %)((( 599 -ADC(PA4) 600 -)))|(% style="width:135px" %)((( 601 -PWM_Setting 602 - 603 -&Digital Interrupt(PA8) 604 -)))|(% style="width:70px" %)((( 605 -Pulse period 606 -)))|(% style="width:89px" %)((( 607 -Duration of high level 608 -))) 609 - 610 -[[image:image-20230817170702-1.png||height="161" width="1044"]] 611 - 612 - 613 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 614 - 615 -**Frequency:** 616 - 617 -(% class="MsoNormal" %) 618 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 619 - 620 -(% class="MsoNormal" %) 621 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 622 - 623 - 624 -(% class="MsoNormal" %) 625 -**Duty cycle:** 626 - 627 -Duty cycle= Duration of high level/ Pulse period*100 ~(%). 628 - 629 -[[image:image-20230818092200-1.png||height="344" width="627"]] 630 - 631 - 632 -===== 2.3.2.10.b Downlink, PWM output ===== 633 - 634 - 635 -[[image:image-20230817173800-3.png||height="412" width="685"]] 636 - 637 -Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 638 - 639 - xx xx xx is the output frequency, the unit is HZ. 640 - 641 - yy is the duty cycle of the output, the unit is %. 642 - 643 - zz zz is the time delay of the output, the unit is ms. 644 - 645 - 646 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 647 - 648 -The oscilloscope displays as follows: 649 - 650 -[[image:image-20230817173858-5.png||height="694" width="921"]] 651 - 652 - 653 653 === 2.3.3 Decode payload === 654 654 655 655 ... ... @@ -873,31 +873,9 @@ 873 873 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 874 874 875 875 876 -==== 2.3.3.12 PWMMOD ====811 +==== 2.3.3.12 Working MOD ==== 877 877 878 878 879 -* ((( 880 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 881 -))) 882 -* ((( 883 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 884 -))) 885 - 886 - [[image:image-20230817183249-3.png||height="320" width="417"]] 887 - 888 -* ((( 889 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 890 -))) 891 -* ((( 892 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 893 - 894 - 895 - 896 -))) 897 - 898 -==== 2.3.3.13 Working MOD ==== 899 - 900 - 901 901 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 902 902 903 903 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -913,8 +913,9 @@ 913 913 * 6: MOD7 914 914 * 7: MOD8 915 915 * 8: MOD9 916 -* 9: MOD10 917 917 830 + 831 + 918 918 == 2.4 Payload Decoder file == 919 919 920 920 ... ... @@ -944,6 +944,8 @@ 944 944 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 945 945 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 946 946 861 + 862 + 947 947 == 3.2 General Commands == 948 948 949 949 ... ... @@ -991,6 +991,8 @@ 991 991 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 992 992 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 993 993 910 + 911 + 994 994 === 3.3.2 Get Device Status === 995 995 996 996 ... ... @@ -1039,6 +1039,8 @@ 1039 1039 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 1040 1040 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 1041 1041 960 + 961 + 1042 1042 === 3.3.4 Set Power Output Duration === 1043 1043 1044 1044 ... ... @@ -1071,6 +1071,8 @@ 1071 1071 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1072 1072 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1073 1073 994 + 995 + 1074 1074 === 3.3.5 Set Weighing parameters === 1075 1075 1076 1076 ... ... @@ -1096,6 +1096,8 @@ 1096 1096 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1097 1097 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1098 1098 1021 + 1022 + 1099 1099 === 3.3.6 Set Digital pulse count value === 1100 1100 1101 1101 ... ... @@ -1119,6 +1119,8 @@ 1119 1119 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1120 1120 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1121 1121 1046 + 1047 + 1122 1122 === 3.3.7 Set Workmode === 1123 1123 1124 1124 ... ... @@ -1143,33 +1143,8 @@ 1143 1143 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1144 1144 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1145 1145 1146 -=== 3.3.8 PWM setting === 1147 1147 1148 1148 1149 -Feature: Set the time acquisition unit for PWM input capture. 1150 - 1151 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1152 - 1153 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1154 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1155 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1156 -0(default) 1157 - 1158 -OK 1159 -))) 1160 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)((( 1161 -OK 1162 - 1163 -))) 1164 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK 1165 - 1166 -(% style="color:blue" %)**Downlink Command: 0x0C** 1167 - 1168 -Format: Command Code (0x0C) followed by 1 bytes. 1169 - 1170 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1171 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1172 - 1173 1173 = 4. Battery & Power Consumption = 1174 1174 1175 1175 ... ... @@ -1195,6 +1195,8 @@ 1195 1195 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1196 1196 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1197 1197 1099 + 1100 + 1198 1198 = 6. FAQ = 1199 1199 1200 1200 == 6.1 Where can i find source code of SN50v3-LB? == ... ... @@ -1203,6 +1203,8 @@ 1203 1203 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1204 1204 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1205 1205 1109 + 1110 + 1206 1206 == 6.2 How to generate PWM Output in SN50v3-LB? == 1207 1207 1208 1208 ... ... @@ -1242,6 +1242,8 @@ 1242 1242 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1243 1243 * (% style="color:red" %)**NH**(%%): No Hole 1244 1244 1150 + 1151 + 1245 1245 = 8. Packing Info = 1246 1246 1247 1247 ... ... @@ -1256,6 +1256,8 @@ 1256 1256 * Package Size / pcs : cm 1257 1257 * Weight / pcs : g 1258 1258 1166 + 1167 + 1259 1259 = 9. Support = 1260 1260 1261 1261
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.9 KB - Content