<
From version < 74.7 >
edited by Xiaoling
on 2023/09/26 08:52
To version < 43.42 >
edited by Xiaoling
on 2023/05/16 15:05
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -19,7 +19,7 @@
19 19  
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
... ... @@ -27,9 +27,9 @@
27 27  
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 +
30 30  == 1.2 ​Features ==
31 31  
32 -
33 33  * LoRaWAN 1.0.3 Class A
34 34  * Ultra-low power consumption
35 35  * Open-Source hardware/software
... ... @@ -122,7 +122,7 @@
122 122  == 1.7 Pin Definitions ==
123 123  
124 124  
125 -[[image:image-20230610163213-1.png||height="404" width="699"]]
125 +[[image:image-20230513102034-2.png]]
126 126  
127 127  
128 128  == 1.8 Mechanical ==
... ... @@ -135,7 +135,7 @@
135 135  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136 136  
137 137  
138 -== 1.9 Hole Option ==
138 +== Hole Option ==
139 139  
140 140  
141 141  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
... ... @@ -150,7 +150,7 @@
150 150  == 2.1 How it works ==
151 151  
152 152  
153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
153 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154 154  
155 155  
156 156  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -158,7 +158,7 @@
158 158  
159 159  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160 160  
161 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
161 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 162  
163 163  
164 164  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -207,7 +207,7 @@
207 207  === 2.3.1 Device Status, FPORT~=5 ===
208 208  
209 209  
210 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
210 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
211 211  
212 212  The Payload format is as below.
213 213  
... ... @@ -215,44 +215,44 @@
215 215  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 216  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 217  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
218 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219 219  
220 220  Example parse in TTNv3
221 221  
222 222  
223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
223 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
224 224  
225 225  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226 226  
227 227  (% style="color:#037691" %)**Frequency Band**:
228 228  
229 -0x01: EU868
229 +*0x01: EU868
230 230  
231 -0x02: US915
231 +*0x02: US915
232 232  
233 -0x03: IN865
233 +*0x03: IN865
234 234  
235 -0x04: AU915
235 +*0x04: AU915
236 236  
237 -0x05: KZ865
237 +*0x05: KZ865
238 238  
239 -0x06: RU864
239 +*0x06: RU864
240 240  
241 -0x07: AS923
241 +*0x07: AS923
242 242  
243 -0x08: AS923-1
243 +*0x08: AS923-1
244 244  
245 -0x09: AS923-2
245 +*0x09: AS923-2
246 246  
247 -0x0a: AS923-3
247 +*0x0a: AS923-3
248 248  
249 -0x0b: CN470
249 +*0x0b: CN470
250 250  
251 -0x0c: EU433
251 +*0x0c: EU433
252 252  
253 -0x0d: KR920
253 +*0x0d: KR920
254 254  
255 -0x0e: MA869
255 +*0x0e: MA869
256 256  
257 257  
258 258  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -276,22 +276,19 @@
276 276  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 277  
278 278  
279 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
279 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280 280  
281 281  For example:
282 282  
283 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
283 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 284  
285 285  
286 286  (% style="color:red" %) **Important Notice:**
287 287  
288 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
288 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 +1. All modes share the same Payload Explanation from HERE.
290 +1. By default, the device will send an uplink message every 20 minutes.
289 289  
290 -2. All modes share the same Payload Explanation from HERE.
291 -
292 -3. By default, the device will send an uplink message every 20 minutes.
293 -
294 -
295 295  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
296 296  
297 297  
... ... @@ -298,8 +298,8 @@
298 298  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
299 299  
300 300  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
301 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
302 -|Value|Bat|(% style="width:191px" %)(((
298 +|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 +|**Value**|Bat|(% style="width:191px" %)(((
303 303  Temperature(DS18B20)(PC13)
304 304  )))|(% style="width:78px" %)(((
305 305  ADC(PA4)
... ... @@ -316,12 +316,11 @@
316 316  
317 317  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
318 318  
319 -
320 320  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
321 321  
322 322  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
323 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
324 -|Value|BAT|(% style="width:196px" %)(((
319 +|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
320 +|**Value**|BAT|(% style="width:196px" %)(((
325 325  Temperature(DS18B20)(PC13)
326 326  )))|(% style="width:87px" %)(((
327 327  ADC(PA4)
... ... @@ -328,30 +328,27 @@
328 328  )))|(% style="width:189px" %)(((
329 329  Digital in(PB15) & Digital Interrupt(PA8)
330 330  )))|(% style="width:208px" %)(((
331 -Distance measure by: 1) LIDAR-Lite V3HP
327 +Distance measure by:1) LIDAR-Lite V3HP
332 332  Or 2) Ultrasonic Sensor
333 333  )))|(% style="width:117px" %)Reserved
334 334  
335 335  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
336 336  
337 -
338 338  (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
339 339  
340 340  [[image:image-20230512173758-5.png||height="563" width="712"]]
341 341  
342 -
343 343  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
344 344  
345 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
339 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
346 346  
347 347  [[image:image-20230512173903-6.png||height="596" width="715"]]
348 348  
349 -
350 350  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
351 351  
352 352  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
353 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
354 -|Value|BAT|(% style="width:183px" %)(((
346 +|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**
347 +|**Value**|BAT|(% style="width:183px" %)(((
355 355  Temperature(DS18B20)(PC13)
356 356  )))|(% style="width:173px" %)(((
357 357  Digital in(PB15) & Digital Interrupt(PA8)
... ... @@ -359,36 +359,34 @@
359 359  ADC(PA4)
360 360  )))|(% style="width:323px" %)(((
361 361  Distance measure by:1)TF-Mini plus LiDAR
362 -Or 2) TF-Luna LiDAR
355 +Or 
356 +2) TF-Luna LiDAR
363 363  )))|(% style="width:188px" %)Distance signal  strength
364 364  
365 365  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
366 366  
367 -
368 368  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
369 369  
370 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
363 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
371 371  
372 372  [[image:image-20230512180609-7.png||height="555" width="802"]]
373 373  
374 -
375 375  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
376 376  
377 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
369 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
378 378  
379 -[[image:image-20230610170047-1.png||height="452" width="799"]]
371 +[[image:image-20230513105207-4.png||height="469" width="802"]]
380 380  
381 381  
382 382  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
383 383  
384 -
385 385  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
386 386  
387 387  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
388 388  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
389 389  **Size(bytes)**
390 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
391 -|Value|(% style="width:68px" %)(((
381 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
382 +|**Value**|(% style="width:68px" %)(((
392 392  ADC1(PA4)
393 393  )))|(% style="width:75px" %)(((
394 394  ADC2(PA5)
... ... @@ -411,8 +411,8 @@
411 411  This mode has total 11 bytes. As shown below:
412 412  
413 413  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
414 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
415 -|Value|BAT|(% style="width:186px" %)(((
405 +|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**
406 +|**Value**|BAT|(% style="width:186px" %)(((
416 416  Temperature1(DS18B20)(PC13)
417 417  )))|(% style="width:82px" %)(((
418 418  ADC(PA4)
... ... @@ -423,29 +423,24 @@
423 423  
424 424  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
425 425  
426 -
427 427  [[image:image-20230513134006-1.png||height="559" width="736"]]
428 428  
429 429  
430 430  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
431 431  
432 -
433 433  [[image:image-20230512164658-2.png||height="532" width="729"]]
434 434  
435 435  Each HX711 need to be calibrated before used. User need to do below two steps:
436 436  
437 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
438 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
426 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
427 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
439 439  1. (((
440 440  Weight has 4 bytes, the unit is g.
441 -
442 -
443 -
444 444  )))
445 445  
446 446  For example:
447 447  
448 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
434 +**AT+GETSENSORVALUE =0**
449 449  
450 450  Response:  Weight is 401 g
451 451  
... ... @@ -455,12 +455,14 @@
455 455  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
456 456  **Size(bytes)**
457 457  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
458 -|Value|BAT|(% style="width:193px" %)(((
459 -Temperature(DS18B20)(PC13)
444 +|**Value**|BAT|(% style="width:193px" %)(((
445 +Temperature(DS18B20)
446 +(PC13)
460 460  )))|(% style="width:85px" %)(((
461 461  ADC(PA4)
462 462  )))|(% style="width:186px" %)(((
463 -Digital in(PB15) & Digital Interrupt(PA8)
450 +Digital in(PB15) &
451 +Digital Interrupt(PA8)
464 464  )))|(% style="width:100px" %)Weight
465 465  
466 466  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
... ... @@ -468,7 +468,6 @@
468 468  
469 469  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
470 470  
471 -
472 472  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
473 473  
474 474  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -475,12 +475,11 @@
475 475  
476 476  [[image:image-20230512181814-9.png||height="543" width="697"]]
477 477  
465 +(% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
478 478  
479 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
480 -
481 481  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
482 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
483 -|Value|BAT|(% style="width:256px" %)(((
468 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
469 +|**Value**|BAT|(% style="width:256px" %)(((
484 484  Temperature(DS18B20)(PC13)
485 485  )))|(% style="width:108px" %)(((
486 486  ADC(PA4)
... ... @@ -495,12 +495,11 @@
495 495  
496 496  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
497 497  
498 -
499 499  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
500 500  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
501 501  **Size(bytes)**
502 502  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
503 -|Value|BAT|(% style="width:188px" %)(((
488 +|**Value**|BAT|(% style="width:188px" %)(((
504 504  Temperature(DS18B20)
505 505  (PC13)
506 506  )))|(% style="width:83px" %)(((
... ... @@ -511,15 +511,13 @@
511 511  
512 512  [[image:image-20230513111203-7.png||height="324" width="975"]]
513 513  
514 -
515 515  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
516 516  
517 -
518 518  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
519 519  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
520 520  **Size(bytes)**
521 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
522 -|Value|BAT|(% style="width:207px" %)(((
504 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
505 +|**Value**|BAT|(% style="width:207px" %)(((
523 523  Temperature(DS18B20)
524 524  (PC13)
525 525  )))|(% style="width:94px" %)(((
... ... @@ -537,23 +537,22 @@
537 537  
538 538  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
539 539  
540 -
541 541  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
542 542  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
543 543  **Size(bytes)**
544 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
545 -|Value|BAT|(((
546 -Temperature
547 -(DS18B20)(PC13)
526 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
527 +|**Value**|BAT|(((
528 +Temperature1(DS18B20)
529 +(PC13)
548 548  )))|(((
549 -Temperature2
550 -(DS18B20)(PB9)
531 +Temperature2(DS18B20)
532 +(PB9)
551 551  )))|(((
552 552  Digital Interrupt
553 553  (PB15)
554 554  )))|(% style="width:193px" %)(((
555 -Temperature3
556 -(DS18B20)(PB8)
537 +Temperature3(DS18B20)
538 +(PB8)
557 557  )))|(% style="width:78px" %)(((
558 558  Count1(PA8)
559 559  )))|(% style="width:78px" %)(((
... ... @@ -564,11 +564,11 @@
564 564  
565 565  (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
566 566  
567 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
549 +(% style="color:#037691" %)**~ AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
568 568  
569 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
551 +(% style="color:#037691" %)**~ AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
570 570  
571 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
553 +(% style="color:#037691" %)**~ AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
572 572  
573 573  
574 574  (% style="color:blue" %)**AT+SETCNT=aa,bb** 
... ... @@ -578,81 +578,9 @@
578 578  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
579 579  
580 580  
581 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
582 582  
583 -
584 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
585 -
586 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
587 -
588 -
589 -===== 2.3.2.10.a  Uplink, PWM input capture =====
590 -
591 -
592 -[[image:image-20230817172209-2.png||height="439" width="683"]]
593 -
594 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
595 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
596 -|Value|Bat|(% style="width:191px" %)(((
597 -Temperature(DS18B20)(PC13)
598 -)))|(% style="width:78px" %)(((
599 -ADC(PA4)
600 -)))|(% style="width:135px" %)(((
601 -PWM_Setting
602 -
603 -&Digital Interrupt(PA8)
604 -)))|(% style="width:70px" %)(((
605 -Pulse period
606 -)))|(% style="width:89px" %)(((
607 -Duration of high level
608 -)))
609 -
610 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
611 -
612 -
613 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
614 -
615 -**Frequency:**
616 -
617 -(% class="MsoNormal" %)
618 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
619 -
620 -(% class="MsoNormal" %)
621 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
622 -
623 -
624 -(% class="MsoNormal" %)
625 -**Duty cycle:**
626 -
627 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
628 -
629 -[[image:image-20230818092200-1.png||height="344" width="627"]]
630 -
631 -
632 -===== 2.3.2.10.b  Downlink, PWM output =====
633 -
634 -
635 -[[image:image-20230817173800-3.png||height="412" width="685"]]
636 -
637 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
638 -
639 - xx xx xx is the output frequency, the unit is HZ.
640 -
641 - yy is the duty cycle of the output, the unit is %.
642 -
643 - zz zz is the time delay of the output, the unit is ms.
644 -
645 -
646 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
647 -
648 -The oscilloscope displays as follows:
649 -
650 -[[image:image-20230817173858-5.png||height="694" width="921"]]
651 -
652 -
653 653  === 2.3.3  ​Decode payload ===
654 654  
655 -
656 656  While using TTN V3 network, you can add the payload format to decode the payload.
657 657  
658 658  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -659,14 +659,13 @@
659 659  
660 660  The payload decoder function for TTN V3 are here:
661 661  
662 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
572 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
663 663  
664 664  
665 665  ==== 2.3.3.1 Battery Info ====
666 666  
577 +Check the battery voltage for SN50v3.
667 667  
668 -Check the battery voltage for SN50v3-LB.
669 -
670 670  Ex1: 0x0B45 = 2885mV
671 671  
672 672  Ex2: 0x0B49 = 2889mV
... ... @@ -674,16 +674,14 @@
674 674  
675 675  ==== 2.3.3.2  Temperature (DS18B20) ====
676 676  
677 -
678 678  If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
679 679  
680 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
588 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
681 681  
682 682  (% style="color:blue" %)**Connection:**
683 683  
684 684  [[image:image-20230512180718-8.png||height="538" width="647"]]
685 685  
686 -
687 687  (% style="color:blue" %)**Example**:
688 688  
689 689  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
... ... @@ -695,7 +695,6 @@
695 695  
696 696  ==== 2.3.3.3 Digital Input ====
697 697  
698 -
699 699  The digital input for pin PB15,
700 700  
701 701  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -705,38 +705,28 @@
705 705  (((
706 706  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
707 707  
708 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
709 -
710 -
614 +(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
711 711  )))
712 712  
713 713  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
714 714  
619 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
715 715  
716 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
621 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
717 717  
718 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
719 -
720 720  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
721 721  
625 +(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
722 722  
723 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
724 724  
725 -
726 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
727 -
728 -[[image:image-20230811113449-1.png||height="370" width="608"]]
729 -
730 730  ==== 2.3.3.5 Digital Interrupt ====
731 731  
630 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
732 732  
733 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
632 +(% style="color:blue" %)**~ Interrupt connection method:**
734 734  
735 -(% style="color:blue" %)** Interrupt connection method:**
736 -
737 737  [[image:image-20230513105351-5.png||height="147" width="485"]]
738 738  
739 -
740 740  (% style="color:blue" %)**Example to use with door sensor :**
741 741  
742 742  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
... ... @@ -743,23 +743,22 @@
743 743  
744 744  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
745 745  
746 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
642 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
747 747  
644 +(% style="color:blue" %)**~ Below is the installation example:**
748 748  
749 -(% style="color:blue" %)**Below is the installation example:**
646 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
750 750  
751 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
752 -
753 753  * (((
754 -One pin to SN50v3-LB's PA8 pin
649 +One pin to SN50_v3's PA8 pin
755 755  )))
756 756  * (((
757 -The other pin to SN50v3-LB's VDD pin
652 +The other pin to SN50_v3's VDD pin
758 758  )))
759 759  
760 760  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
761 761  
762 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
657 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
763 763  
764 764  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
765 765  
... ... @@ -771,32 +771,29 @@
771 771  
772 772  The command is:
773 773  
774 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
669 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
775 775  
776 776  Below shows some screen captures in TTN V3:
777 777  
778 778  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
779 779  
675 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
780 780  
781 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
782 -
783 783  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
784 784  
785 785  
786 786  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
787 787  
788 -
789 789  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
790 790  
791 791  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
792 792  
793 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
686 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
794 794  
795 -
796 796  Below is the connection to SHT20/ SHT31. The connection is as below:
797 797  
798 -[[image:image-20230610170152-2.png||height="501" width="846"]]
799 799  
691 +[[image:image-20230513103633-3.png||height="448" width="716"]]
800 800  
801 801  The device will be able to get the I2C sensor data now and upload to IoT Server.
802 802  
... ... @@ -815,26 +815,23 @@
815 815  
816 816  ==== 2.3.3.7  ​Distance Reading ====
817 817  
818 -
819 819  Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
820 820  
821 821  
822 822  ==== 2.3.3.8 Ultrasonic Sensor ====
823 823  
824 -
825 825  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
826 826  
827 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
717 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
828 828  
829 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
719 +The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
830 830  
831 831  The picture below shows the connection:
832 832  
833 833  [[image:image-20230512173903-6.png||height="596" width="715"]]
834 834  
725 +Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
835 835  
836 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
837 -
838 838  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
839 839  
840 840  **Example:**
... ... @@ -842,17 +842,16 @@
842 842  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
843 843  
844 844  
734 +
845 845  ==== 2.3.3.9  Battery Output - BAT pin ====
846 846  
737 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
847 847  
848 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
849 849  
850 -
851 851  ==== 2.3.3.10  +5V Output ====
852 852  
742 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
853 853  
854 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
855 -
856 856  The 5V output time can be controlled by AT Command.
857 857  
858 858  (% style="color:blue" %)**AT+5VT=1000**
... ... @@ -859,45 +859,21 @@
859 859  
860 860  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
861 861  
862 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
750 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
863 863  
864 864  
753 +
865 865  ==== 2.3.3.11  BH1750 Illumination Sensor ====
866 866  
867 -
868 868  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
869 869  
870 870  [[image:image-20230512172447-4.png||height="416" width="712"]]
871 871  
872 -
873 873  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
874 874  
875 875  
876 -==== 2.3.3.12  PWM MOD ====
763 +==== 2.3.3.12  Working MOD ====
877 877  
878 -
879 -* (((
880 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
881 -)))
882 -* (((
883 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
884 -)))
885 -
886 - [[image:image-20230817183249-3.png||height="320" width="417"]]
887 -
888 -* (((
889 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
890 -)))
891 -* (((
892 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
893 -
894 -
895 -
896 -)))
897 -
898 -==== 2.3.3.13  Working MOD ====
899 -
900 -
901 901  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
902 902  
903 903  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -913,8 +913,9 @@
913 913  * 6: MOD7
914 914  * 7: MOD8
915 915  * 8: MOD9
916 -* 9: MOD10
917 917  
781 +
782 +
918 918  == 2.4 Payload Decoder file ==
919 919  
920 920  
... ... @@ -925,6 +925,7 @@
925 925  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
926 926  
927 927  
793 +
928 928  == 2.5 Frequency Plans ==
929 929  
930 930  
... ... @@ -960,18 +960,17 @@
960 960  == 3.3 Commands special design for SN50v3-LB ==
961 961  
962 962  
963 -These commands only valid for SN50v3-LB, as below:
829 +These commands only valid for S31x-LB, as below:
964 964  
965 965  
966 966  === 3.3.1 Set Transmit Interval Time ===
967 967  
968 -
969 969  Feature: Change LoRaWAN End Node Transmit Interval.
970 970  
971 971  (% style="color:blue" %)**AT Command: AT+TDC**
972 972  
973 973  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
974 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
839 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
975 975  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
976 976  30000
977 977  OK
... ... @@ -991,25 +991,25 @@
991 991  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
992 992  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
993 993  
994 -=== 3.3.2 Get Device Status ===
995 995  
996 996  
861 +=== 3.3.2 Get Device Status ===
862 +
997 997  Send a LoRaWAN downlink to ask the device to send its status.
998 998  
999 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
865 +(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
1000 1000  
1001 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
867 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
1002 1002  
1003 1003  
1004 1004  === 3.3.3 Set Interrupt Mode ===
1005 1005  
1006 -
1007 1007  Feature, Set Interrupt mode for GPIO_EXIT.
1008 1008  
1009 1009  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1010 1010  
1011 1011  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1012 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
877 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1013 1013  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1014 1014  0
1015 1015  OK
... ... @@ -1024,6 +1024,7 @@
1024 1024  )))|(% style="width:157px" %)OK
1025 1025  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1026 1026  Set Transmit Interval
892 +
1027 1027  trigger by rising edge.
1028 1028  )))|(% style="width:157px" %)OK
1029 1029  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -1039,9 +1039,10 @@
1039 1039  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1040 1040  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1041 1041  
1042 -=== 3.3.4 Set Power Output Duration ===
1043 1043  
1044 1044  
910 +=== 3.3.4 Set Power Output Duration ===
911 +
1045 1045  Control the output duration 5V . Before each sampling, device will
1046 1046  
1047 1047  ~1. first enable the power output to external sensor,
... ... @@ -1053,7 +1053,7 @@
1053 1053  (% style="color:blue" %)**AT Command: AT+5VT**
1054 1054  
1055 1055  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1056 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
923 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1057 1057  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1058 1058  500(default)
1059 1059  OK
... ... @@ -1071,15 +1071,16 @@
1071 1071  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1072 1072  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1073 1073  
1074 -=== 3.3.5 Set Weighing parameters ===
1075 1075  
1076 1076  
943 +=== 3.3.5 Set Weighing parameters ===
944 +
1077 1077  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1078 1078  
1079 1079  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1080 1080  
1081 1081  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1082 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
950 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1083 1083  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1084 1084  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1085 1085  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -1096,9 +1096,10 @@
1096 1096  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1097 1097  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1098 1098  
1099 -=== 3.3.6 Set Digital pulse count value ===
1100 1100  
1101 1101  
969 +=== 3.3.6 Set Digital pulse count value ===
970 +
1102 1102  Feature: Set the pulse count value.
1103 1103  
1104 1104  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -1106,7 +1106,7 @@
1106 1106  (% style="color:blue" %)**AT Command: AT+SETCNT**
1107 1107  
1108 1108  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1109 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
978 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1110 1110  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1111 1111  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1112 1112  
... ... @@ -1119,15 +1119,16 @@
1119 1119  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1120 1120  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1121 1121  
1122 -=== 3.3.7 Set Workmode ===
1123 1123  
1124 1124  
993 +=== 3.3.7 Set Workmode ===
994 +
1125 1125  Feature: Switch working mode.
1126 1126  
1127 1127  (% style="color:blue" %)**AT Command: AT+MOD**
1128 1128  
1129 1129  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1130 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1000 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1131 1131  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1132 1132  OK
1133 1133  )))
... ... @@ -1143,33 +1143,8 @@
1143 1143  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1144 1144  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1145 1145  
1146 -=== 3.3.8 PWM setting ===
1147 1147  
1148 1148  
1149 -Feature: Set the time acquisition unit for PWM input capture.
1150 -
1151 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1152 -
1153 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1154 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1155 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1156 -0(default)
1157 -
1158 -OK
1159 -)))
1160 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1161 -OK
1162 -
1163 -)))
1164 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1165 -
1166 -(% style="color:blue" %)**Downlink Command: 0x0C**
1167 -
1168 -Format: Command Code (0x0C) followed by 1 bytes.
1169 -
1170 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1171 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1172 -
1173 1173  = 4. Battery & Power Consumption =
1174 1174  
1175 1175  
... ... @@ -1182,43 +1182,27 @@
1182 1182  
1183 1183  
1184 1184  (% class="wikigeneratedid" %)
1185 -**User can change firmware SN50v3-LB to:**
1030 +User can change firmware SN50v3-LB to:
1186 1186  
1187 1187  * Change Frequency band/ region.
1188 1188  * Update with new features.
1189 1189  * Fix bugs.
1190 1190  
1191 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1036 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1192 1192  
1193 -**Methods to Update Firmware:**
1194 1194  
1195 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1196 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1039 +Methods to Update Firmware:
1197 1197  
1041 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1042 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1043 +
1198 1198  = 6. FAQ =
1199 1199  
1200 1200  == 6.1 Where can i find source code of SN50v3-LB? ==
1201 1201  
1202 -
1203 1203  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1204 1204  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1205 1205  
1206 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1207 -
1208 -
1209 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1210 -
1211 -
1212 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1213 -
1214 -
1215 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1216 -
1217 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1218 -
1219 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1220 -
1221 -
1222 1222  = 7. Order Info =
1223 1223  
1224 1224  
... ... @@ -1244,7 +1244,6 @@
1244 1244  
1245 1245  = 8. ​Packing Info =
1246 1246  
1247 -
1248 1248  (% style="color:#037691" %)**Package Includes**:
1249 1249  
1250 1250  * SN50v3-LB LoRaWAN Generic Node
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0