<
From version < 74.7 >
edited by Xiaoling
on 2023/09/26 08:52
To version < 12.1 >
edited by Edwin Chen
on 2023/05/11 23:06
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
3 3  
4 4  
5 5  
... ... @@ -16,20 +16,23 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
21 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
22 +
23 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
29 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
32 +
30 30  == 1.2 ​Features ==
31 31  
32 -
33 33  * LoRaWAN 1.0.3 Class A
34 34  * Ultra-low power consumption
35 35  * Open-Source hardware/software
... ... @@ -42,7 +42,6 @@
42 42  
43 43  == 1.3 Specification ==
44 44  
45 -
46 46  (% style="color:#037691" %)**Common DC Characteristics:**
47 47  
48 48  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -79,7 +79,6 @@
79 79  
80 80  == 1.4 Sleep mode and working mode ==
81 81  
82 -
83 83  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84 84  
85 85  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -122,7 +122,7 @@
122 122  == 1.7 Pin Definitions ==
123 123  
124 124  
125 -[[image:image-20230610163213-1.png||height="404" width="699"]]
125 +[[image:image-20230511203450-2.png||height="443" width="785"]]
126 126  
127 127  
128 128  == 1.8 Mechanical ==
... ... @@ -135,9 +135,8 @@
135 135  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136 136  
137 137  
138 -== 1.9 Hole Option ==
138 +== Hole Option ==
139 139  
140 -
141 141  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142 142  
143 143  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -150,7 +150,7 @@
150 150  == 2.1 How it works ==
151 151  
152 152  
153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154 154  
155 155  
156 156  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -158,7 +158,7 @@
158 158  
159 159  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160 160  
161 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 162  
163 163  
164 164  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -207,7 +207,7 @@
207 207  === 2.3.1 Device Status, FPORT~=5 ===
208 208  
209 209  
210 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
211 211  
212 212  The Payload format is as below.
213 213  
... ... @@ -215,44 +215,44 @@
215 215  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 216  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 217  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219 219  
220 220  Example parse in TTNv3
221 221  
222 222  
223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
224 224  
225 225  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226 226  
227 227  (% style="color:#037691" %)**Frequency Band**:
228 228  
229 -0x01: EU868
228 +*0x01: EU868
230 230  
231 -0x02: US915
230 +*0x02: US915
232 232  
233 -0x03: IN865
232 +*0x03: IN865
234 234  
235 -0x04: AU915
234 +*0x04: AU915
236 236  
237 -0x05: KZ865
236 +*0x05: KZ865
238 238  
239 -0x06: RU864
238 +*0x06: RU864
240 240  
241 -0x07: AS923
240 +*0x07: AS923
242 242  
243 -0x08: AS923-1
242 +*0x08: AS923-1
244 244  
245 -0x09: AS923-2
244 +*0x09: AS923-2
246 246  
247 -0x0a: AS923-3
246 +*0x0a: AS923-3
248 248  
249 -0x0b: CN470
248 +*0x0b: CN470
250 250  
251 -0x0c: EU433
250 +*0x0c: EU433
252 252  
253 -0x0d: KR920
252 +*0x0d: KR920
254 254  
255 -0x0e: MA869
254 +*0x0e: MA869
256 256  
257 257  
258 258  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -276,16 +276,16 @@
276 276  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 277  
278 278  
279 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280 280  
281 281  For example:
282 282  
283 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
282 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 284  
285 285  
286 -(% style="color:red" %) **Important Notice:**
285 +(% style="color:red" %) **Important Notice:** (%%)
287 287  
288 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 289  
290 290  2. All modes share the same Payload Explanation from HERE.
291 291  
... ... @@ -292,367 +292,223 @@
292 292  3. By default, the device will send an uplink message every 20 minutes.
293 293  
294 294  
295 -==== 2.3.2.1  MOD~=1 (Default Mode) ====
294 +=== 2.3.1  MOD~=1 (Default Mode) ===
296 296  
297 -
298 298  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
299 299  
300 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
301 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
302 -|Value|Bat|(% style="width:191px" %)(((
303 -Temperature(DS18B20)(PC13)
304 -)))|(% style="width:78px" %)(((
305 -ADC(PA4)
306 -)))|(% style="width:216px" %)(((
307 -Digital in(PB15)&Digital Interrupt(PA8)
308 -)))|(% style="width:308px" %)(((
309 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
310 -)))|(% style="width:154px" %)(((
311 -Humidity(SHT20 or SHT31)
312 -)))
298 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
299 +|**Value**|Bat|Temperature(DS18B20)|ADC|Digital in & Digital Interrupt|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|Humidity(SHT20)
313 313  
314 314  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
315 315  
303 +=== 2.3.2 MOD~=2 (Distance Mode) ===
316 316  
317 -==== 2.3.2.2  MOD~=2 (Distance Mode) ====
318 -
319 -
320 320  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
321 321  
322 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
323 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
324 -|Value|BAT|(% style="width:196px" %)(((
325 -Temperature(DS18B20)(PC13)
326 -)))|(% style="width:87px" %)(((
327 -ADC(PA4)
328 -)))|(% style="width:189px" %)(((
329 -Digital in(PB15) & Digital Interrupt(PA8)
330 -)))|(% style="width:208px" %)(((
331 -Distance measure by: 1) LIDAR-Lite V3HP
332 -Or 2) Ultrasonic Sensor
333 -)))|(% style="width:117px" %)Reserved
307 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
308 +|**Value**|BAT|(((
309 +Temperature(DS18B20)
310 +)))|ADC|Digital in & Digital Interrupt|(((
311 +Distance measure by:
312 +1) LIDAR-Lite V3HP
313 +Or
314 +2) Ultrasonic Sensor
315 +)))|Reserved
334 334  
335 335  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
336 336  
319 +**Connection of LIDAR-Lite V3HP:**
337 337  
338 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
321 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324581381-162.png?rev=1.1||alt="1656324581381-162.png"]]
339 339  
340 -[[image:image-20230512173758-5.png||height="563" width="712"]]
323 +**Connection to Ultrasonic Sensor:**
341 341  
325 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324598488-204.png?rev=1.1||alt="1656324598488-204.png"]]
342 342  
343 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
344 -
345 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
346 -
347 -[[image:image-20230512173903-6.png||height="596" width="715"]]
348 -
349 -
350 350  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
351 351  
352 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
353 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
354 -|Value|BAT|(% style="width:183px" %)(((
355 -Temperature(DS18B20)(PC13)
356 -)))|(% style="width:173px" %)(((
357 -Digital in(PB15) & Digital Interrupt(PA8)
358 -)))|(% style="width:84px" %)(((
359 -ADC(PA4)
360 -)))|(% style="width:323px" %)(((
329 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2**
330 +|**Value**|BAT|(((
331 +Temperature(DS18B20)
332 +)))|Digital in & Digital Interrupt|ADC|(((
361 361  Distance measure by:1)TF-Mini plus LiDAR
362 -Or 2) TF-Luna LiDAR
363 -)))|(% style="width:188px" %)Distance signal  strength
334 +Or 
335 +2) TF-Luna LiDAR
336 +)))|Distance signal  strength
364 364  
365 365  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
366 366  
367 -
368 368  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
369 369  
370 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
342 +Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0
371 371  
372 -[[image:image-20230512180609-7.png||height="555" width="802"]]
344 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376795715-436.png?rev=1.1||alt="1656376795715-436.png"]]
373 373  
374 -
375 375  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
376 376  
377 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
348 +Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0
378 378  
379 -[[image:image-20230610170047-1.png||height="452" width="799"]]
350 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]]
380 380  
352 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption.
381 381  
382 -==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
354 +=== 2.3.3 MOD~=3 (3 ADC + I2C) ===
383 383  
384 -
385 385  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
386 386  
387 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
388 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
358 +|=(((
389 389  **Size(bytes)**
390 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
391 -|Value|(% style="width:68px" %)(((
392 -ADC1(PA4)
393 -)))|(% style="width:75px" %)(((
394 -ADC2(PA5)
395 -)))|(((
396 -ADC3(PA8)
397 -)))|(((
398 -Digital Interrupt(PB15)
399 -)))|(% style="width:304px" %)(((
400 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
401 -)))|(% style="width:163px" %)(((
402 -Humidity(SHT20 or SHT31)
403 -)))|(% style="width:53px" %)Bat
360 +)))|=**2**|=**2**|=**2**|=**1**|=2|=2|=1
361 +|**Value**|ADC(Pin PA0)|ADC2(PA1)|ADC3 (PA4)|(((
362 +Digital in(PA12)&Digital Interrupt1(PB14)
363 +)))|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|Humidity(SHT20 or SHT31)|Bat
404 404  
405 -[[image:image-20230513110214-6.png]]
365 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]]
406 406  
367 +=== 2.3.4 MOD~=4 (3 x DS18B20) ===
407 407  
408 -==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
369 +This mode is supported in firmware version since v1.6.1. Software set to AT+MOD=4
409 409  
371 +Hardware connection is as below,
410 410  
411 -This mode has total 11 bytes. As shown below:
373 +**( Note:**
412 412  
413 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
414 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
415 -|Value|BAT|(% style="width:186px" %)(((
416 -Temperature1(DS18B20)(PC13)
417 -)))|(% style="width:82px" %)(((
418 -ADC(PA4)
419 -)))|(% style="width:210px" %)(((
420 -Digital in(PB15) & Digital Interrupt(PA8) 
421 -)))|(% style="width:191px" %)Temperature2(DS18B20)
422 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
375 +* In hardware version v1.x and v2.0 , R3 & R4 should change from 10k to 4.7k ohm to support the other 2 x DS18B20 probes.
376 +* In hardware version v2.1 no need to change R3 , R4, by default, they are 4.7k ohm already.
423 423  
424 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
378 +See [[here>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H1.6A0HardwareChangelog]] for hardware changelog. **) **
425 425  
380 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377461619-156.png?rev=1.1||alt="1656377461619-156.png"]]
426 426  
427 -[[image:image-20230513134006-1.png||height="559" width="736"]]
382 +This mode has total 11 bytes. As shown below:
428 428  
384 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
385 +|**Value**|BAT|(((
386 +Temperature1
387 +(DS18B20)
388 +(PB3)
389 +)))|ADC|Digital in & Digital Interrupt|Temperature2
390 +(DS18B20)
391 +(PA9)|Temperature3
392 +(DS18B20)
393 +(PA10)
429 429  
430 -==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
395 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
431 431  
397 +=== 2.3.5 MOD~=5(Weight Measurement by HX711) ===
432 432  
433 -[[image:image-20230512164658-2.png||height="532" width="729"]]
399 +This mode is supported in firmware version since v1.6.2. Please use v1.6.5 firmware version so user no need to use extra LDO for connection.
434 434  
435 -Each HX711 need to be calibrated before used. User need to do below two steps:
436 436  
437 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
438 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
439 -1. (((
440 -Weight has 4 bytes, the unit is g.
402 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378224664-860.png?rev=1.1||alt="1656378224664-860.png"]]
441 441  
404 +Each HX711 need to be calibrated before used. User need to do below two steps:
442 442  
443 -
406 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
407 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
408 +1. (((
409 +Remove the limit of plus or minus 5Kg in mode 5, and expand from 2 bytes to 4 bytes, the unit is g.(Since v1.8.0)
444 444  )))
445 445  
446 446  For example:
447 447  
448 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
414 +**AT+WEIGAP =403.0**
449 449  
450 450  Response:  Weight is 401 g
451 451  
452 452  Check the response of this command and adjust the value to match the real value for thing.
453 453  
454 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
455 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
420 +|=(((
456 456  **Size(bytes)**
457 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
458 -|Value|BAT|(% style="width:193px" %)(((
459 -Temperature(DS18B20)(PC13)
460 -)))|(% style="width:85px" %)(((
461 -ADC(PA4)
462 -)))|(% style="width:186px" %)(((
463 -Digital in(PB15) & Digital Interrupt(PA8)
464 -)))|(% style="width:100px" %)Weight
422 +)))|=**2**|=**2**|=**2**|=**1**|=**4**|=2
423 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Weight|Reserved
465 465  
466 466  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
467 467  
427 +=== 2.3.6 MOD~=6 (Counting Mode, Since firmware v1.6.5) ===
468 468  
469 -==== 2.3.2.6  MOD~=6 (Counting Mode) ====
470 -
471 -
472 472  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
473 473  
474 474  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
475 475  
476 -[[image:image-20230512181814-9.png||height="543" width="697"]]
433 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378351863-572.png?rev=1.1||alt="1656378351863-572.png"]]
477 477  
435 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen.
478 478  
479 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
437 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4**
438 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(((
439 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
440 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count
480 480  
481 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
482 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
483 -|Value|BAT|(% style="width:256px" %)(((
484 -Temperature(DS18B20)(PC13)
485 -)))|(% style="width:108px" %)(((
486 -ADC(PA4)
487 -)))|(% style="width:126px" %)(((
488 -Digital in(PB15)
489 -)))|(% style="width:145px" %)(((
490 -Count(PA8)
491 -)))
492 -
493 493  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
494 494  
444 +=== 2.3.7  MOD~=7 Three interrupt contact modes (the hardware version needs to support three interrupt versions, Since firmware v1.8.0) ===
495 495  
496 -==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
446 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]]
497 497  
498 -
499 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
500 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
448 +|=(((
501 501  **Size(bytes)**
502 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
503 -|Value|BAT|(% style="width:188px" %)(((
504 -Temperature(DS18B20)
505 -(PC13)
506 -)))|(% style="width:83px" %)(((
507 -ADC(PA5)
508 -)))|(% style="width:184px" %)(((
509 -Digital Interrupt1(PA8)
510 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
450 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2
451 +|**Value**|BAT|Temperature(DS18B20)|ADC|(((
452 +Digital in(PA12)&Digital Interrupt1(PB14)
453 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved
511 511  
512 -[[image:image-20230513111203-7.png||height="324" width="975"]]
455 +=== 2.3.8  MOD~=8 (3ADC+1DS18B20, Since firmware v1.8.0) ===
513 513  
514 -
515 -==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
516 -
517 -
518 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
519 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
457 +|=(((
520 520  **Size(bytes)**
521 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
522 -|Value|BAT|(% style="width:207px" %)(((
523 -Temperature(DS18B20)
524 -(PC13)
525 -)))|(% style="width:94px" %)(((
526 -ADC1(PA4)
527 -)))|(% style="width:198px" %)(((
528 -Digital Interrupt(PB15)
529 -)))|(% style="width:84px" %)(((
530 -ADC2(PA5)
531 -)))|(% style="width:82px" %)(((
532 -ADC3(PA8)
459 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2
460 +|**Value**|BAT|Temperature(DS18B20)|(((
461 +ADC1(PA0)
462 +)))|(((
463 +Digital in
464 +& Digital Interrupt(PB14)
465 +)))|(((
466 +ADC2(PA1)
467 +)))|(((
468 +ADC3(PA4)
533 533  )))
534 534  
535 -[[image:image-20230513111231-8.png||height="335" width="900"]]
471 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]]
536 536  
473 +=== 2.3.9  MOD~=9 3DS18B20+ two Interrupt count mode (the hardware version needs to support 3 interrupt versions, Since firmware v1.8.0) ===
537 537  
538 -==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
539 -
540 -
541 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
542 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
475 +|=(((
543 543  **Size(bytes)**
544 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
545 -|Value|BAT|(((
546 -Temperature
547 -(DS18B20)(PC13)
477 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4
478 +|**Value**|BAT|(((
479 +Temperature1(PB3)
548 548  )))|(((
549 -Temperature2
550 -(DS18B20)(PB9)
481 +Temperature2(PA9)
551 551  )))|(((
552 -Digital Interrupt
553 -(PB15)
554 -)))|(% style="width:193px" %)(((
555 -Temperature3
556 -(DS18B20)(PB8)
557 -)))|(% style="width:78px" %)(((
558 -Count1(PA8)
559 -)))|(% style="width:78px" %)(((
560 -Count2(PA4)
483 +Digital in
484 +& Digital Interrupt(PA4)
485 +)))|(((
486 +Temperature3(PA10)
487 +)))|(((
488 +Count1(PB14)
489 +)))|(((
490 +Count2(PB15)
561 561  )))
562 562  
563 -[[image:image-20230513111255-9.png||height="341" width="899"]]
493 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]]
564 564  
565 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
495 +**The newly added AT command is issued correspondingly:**
566 566  
567 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
497 +**~ AT+INTMOD1** ** PB14**  pin:  Corresponding downlink:  **06 00 00 xx**
568 568  
569 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
499 +**~ AT+INTMOD2**  **PB15** pin:  Corresponding downlink:**  06 00 01 xx**
570 570  
571 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
501 +**~ AT+INTMOD3**  **PA4**  pin:  Corresponding downlink:  ** 06 00 02 xx**
572 572  
503 +**AT+SETCNT=aa,bb** 
573 573  
574 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
505 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb
575 575  
576 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
507 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb
577 577  
578 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
509 +=== 2.3.10  ​Decode payload in The Things Network ===
579 579  
580 -
581 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
582 -
583 -
584 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
585 -
586 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
587 -
588 -
589 -===== 2.3.2.10.a  Uplink, PWM input capture =====
590 -
591 -
592 -[[image:image-20230817172209-2.png||height="439" width="683"]]
593 -
594 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
595 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
596 -|Value|Bat|(% style="width:191px" %)(((
597 -Temperature(DS18B20)(PC13)
598 -)))|(% style="width:78px" %)(((
599 -ADC(PA4)
600 -)))|(% style="width:135px" %)(((
601 -PWM_Setting
602 -
603 -&Digital Interrupt(PA8)
604 -)))|(% style="width:70px" %)(((
605 -Pulse period
606 -)))|(% style="width:89px" %)(((
607 -Duration of high level
608 -)))
609 -
610 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
611 -
612 -
613 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
614 -
615 -**Frequency:**
616 -
617 -(% class="MsoNormal" %)
618 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
619 -
620 -(% class="MsoNormal" %)
621 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
622 -
623 -
624 -(% class="MsoNormal" %)
625 -**Duty cycle:**
626 -
627 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
628 -
629 -[[image:image-20230818092200-1.png||height="344" width="627"]]
630 -
631 -
632 -===== 2.3.2.10.b  Downlink, PWM output =====
633 -
634 -
635 -[[image:image-20230817173800-3.png||height="412" width="685"]]
636 -
637 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
638 -
639 - xx xx xx is the output frequency, the unit is HZ.
640 -
641 - yy is the duty cycle of the output, the unit is %.
642 -
643 - zz zz is the time delay of the output, the unit is ms.
644 -
645 -
646 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
647 -
648 -The oscilloscope displays as follows:
649 -
650 -[[image:image-20230817173858-5.png||height="694" width="921"]]
651 -
652 -
653 -=== 2.3.3  ​Decode payload ===
654 -
655 -
656 656  While using TTN V3 network, you can add the payload format to decode the payload.
657 657  
658 658  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -659,33 +659,41 @@
659 659  
660 660  The payload decoder function for TTN V3 are here:
661 661  
662 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
517 +LSN50 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
663 663  
664 664  
665 -==== 2.3.3.1 Battery Info ====
520 +Sensor Data is uplink via FPORT=2
666 666  
522 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
523 +|=(% style="width: 90px;background-color:#D9E2F3" %)(((
524 +**Size(bytes)**
525 +)))|=(% style="width: 80px;background-color:#D9E2F3" %)2|=(% style="width: 90px;background-color:#D9E2F3" %)4|=(% style="width:80px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)2
526 +|(% style="width:99px" %)**Value**|(% style="width:69px" %)(((
527 +[[Battery>>||anchor="HBattery:"]]
528 +)))|(% style="width:130px" %)(((
529 +[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]]
530 +)))|(% style="width:91px" %)(((
531 +[[Alarm Flag>>||anchor="HAlarmFlag26MOD:"]]
532 +)))|(% style="width:103px" %)(((
533 +[[Temperature>>||anchor="HTemperature:"]]
534 +)))|(% style="width:80px" %)(((
535 +[[Humidity>>||anchor="HHumidity:"]]
536 +)))
667 667  
668 -Check the battery voltage for SN50v3-LB.
538 +==== (% style="color:#4472c4" %)**Battery**(%%) ====
669 669  
540 +Sensor Battery Level.
541 +
670 670  Ex1: 0x0B45 = 2885mV
671 671  
672 672  Ex2: 0x0B49 = 2889mV
673 673  
674 674  
675 -==== 2.3.3.2  Temperature (DS18B20) ====
676 676  
548 +==== (% style="color:#4472c4" %)**Temperature**(%%) ====
677 677  
678 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
550 +**Example**:
679 679  
680 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
681 -
682 -(% style="color:blue" %)**Connection:**
683 -
684 -[[image:image-20230512180718-8.png||height="538" width="647"]]
685 -
686 -
687 -(% style="color:blue" %)**Example**:
688 -
689 689  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
690 690  
691 691  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -693,252 +693,195 @@
693 693  (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
694 694  
695 695  
696 -==== 2.3.3.3 Digital Input ====
559 +==== (% style="color:#4472c4" %)**Humidity**(%%) ====
697 697  
698 698  
699 -The digital input for pin PB15,
562 +Read:0x(0197)=412    Value:  412 / 10=41.2, So 41.2%
700 700  
701 -* When PB15 is high, the bit 1 of payload byte 6 is 1.
702 -* When PB15 is low, the bit 1 of payload byte 6 is 0.
703 703  
704 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
705 -(((
706 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
565 +==== (% style="color:#4472c4" %)**Alarm Flag& MOD**(%%) ====
707 707  
708 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
709 709  
710 -
711 -)))
568 +**Example:**
712 712  
713 -==== 2.3.3.4  Analogue Digital Converter (ADC) ====
570 +If payload & 0x01 = 0x01  **~-~->** This is an Alarm Message
714 714  
572 +If payload & 0x01 = 0x00  **~-~->** This is a normal uplink message, no alarm
715 715  
716 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
574 +If payload >> 2 = 0x00  **~-~->**  means MOD=1, This is a sampling uplink message
717 717  
718 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
576 +If payload >> 2 = 0x31  **~-~->**  means MOD=31, this message is a reply message for polling, this message contains the alarm settingssee [[this link>>path:#HPolltheAlarmsettings:]] for detail. 
719 719  
720 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
721 721  
579 +== 2.4 Payload Decoder file ==
722 722  
723 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
724 724  
582 +In TTN, use can add a custom payload so it shows friendly reading
725 725  
726 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
584 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
727 727  
728 -[[image:image-20230811113449-1.png||height="370" width="608"]]
586 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
729 729  
730 -==== 2.3.3.5 Digital Interrupt ====
731 731  
589 +== 2.5 Datalog Feature ==
732 732  
733 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
734 734  
735 -(% style="color:blue" %)** Interrupt connection method:**
592 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes.
736 736  
737 -[[image:image-20230513105351-5.png||height="147" width="485"]]
738 738  
595 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
739 739  
740 -(% style="color:blue" %)**Example to use with door sensor :**
741 741  
742 -The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
598 +Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
743 743  
744 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
600 +* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server.
601 +* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages.
745 745  
746 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
603 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
747 747  
605 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
748 748  
749 -(% style="color:blue" %)**Below is the installation example:**
607 +=== 2.5.2 Unix TimeStamp ===
750 750  
751 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
752 752  
753 -* (((
754 -One pin to SN50v3-LB's PA8 pin
755 -)))
756 -* (((
757 -The other pin to SN50v3-LB's VDD pin
758 -)))
610 +S31x-LB uses Unix TimeStamp format based on
759 759  
760 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
612 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
761 761  
762 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
614 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
763 763  
764 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
616 +Below is the converter example
765 765  
766 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
618 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
767 767  
768 -The above photos shows the two parts of the magnetic switch fitted to a door.
620 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
769 769  
770 -The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
771 771  
772 -The command is:
623 +=== 2.5.3 Set Device Time ===
773 773  
774 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
775 775  
776 -Below shows some screen captures in TTN V3:
626 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
777 777  
778 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
628 +Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
779 779  
630 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
780 780  
781 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
782 782  
783 -door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
633 +=== 2.5.4 Datalog Uplink payload (FPORT~=3) ===
784 784  
785 785  
786 -==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
636 +The Datalog uplinks will use below payload format.
787 787  
638 +**Retrieval data payload:**
788 788  
789 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
640 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
641 +|=(% style="width: 80px;background-color:#D9E2F3" %)(((
642 +**Size(bytes)**
643 +)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4**
644 +|(% style="width:103px" %)**Value**|(% style="width:54px" %)(((
645 +[[Temp_Black>>||anchor="HTemperatureBlack:"]]
646 +)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]]
790 790  
791 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
648 +**Poll message flag & Ext:**
792 792  
793 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
650 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]]
794 794  
652 +**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
795 795  
796 -Below is the connection to SHT20/ SHT31. The connection is as below:
654 +**Poll Message Flag**: 1: This message is a poll message reply.
797 797  
798 -[[image:image-20230610170152-2.png||height="501" width="846"]]
656 +* Poll Message Flag is set to 1.
799 799  
658 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
800 800  
801 -The device will be able to get the I2C sensor data now and upload to IoT Server.
660 +For example, in US915 band, the max payload for different DR is:
802 802  
803 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
662 +**a) DR0:** max is 11 bytes so one entry of data
804 804  
805 -Convert the read byte to decimal and divide it by ten.
664 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
806 806  
807 -**Example:**
666 +**c) DR2:** total payload includes 11 entries of data
808 808  
809 -Temperature:  Read:0116(H) = 278(D Value 278 /10=27.8℃;
668 +**d) DR3: **total payload includes 22 entries of data.
810 810  
811 -Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
670 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
812 812  
813 -If you want to use other I2C device, please refer the SHT20 part source code as reference.
814 814  
815 -
816 -==== 2.3.3.7  ​Distance Reading ====
817 -
818 -
819 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
820 -
821 -
822 -==== 2.3.3.8 Ultrasonic Sensor ====
823 -
824 -
825 -This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
826 -
827 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
828 -
829 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
830 -
831 -The picture below shows the connection:
832 -
833 -[[image:image-20230512173903-6.png||height="596" width="715"]]
834 -
835 -
836 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
837 -
838 -The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
839 -
840 840  **Example:**
841 841  
842 -Distance:  Read: 0C2D(Hex) = 3117(D)  Value 3117 mm=311.7 cm
675 +If S31x-LB has below data inside Flash:
843 843  
677 +[[image:1682646494051-944.png]]
844 844  
845 -==== 2.3.3.9  Battery Output - BAT pin ====
679 +If user sends below downlink command: 3160065F9760066DA705
846 846  
681 +Where : Start time: 60065F97 = time 21/1/19 04:27:03
847 847  
848 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
683 + Stop time: 60066DA7= time 21/1/19 05:27:03
849 849  
850 850  
851 -==== 2.3.3.1 +5V Output ====
686 +**S31x-LB will uplink this payload.**
852 852  
688 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]]
853 853  
854 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
690 +(((
691 +__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
692 +)))
855 855  
856 -The 5V output time can be controlled by AT Command.
694 +(((
695 +Where the first 11 bytes is for the first entry:
696 +)))
857 857  
858 -(% style="color:blue" %)**AT+5VT=1000**
698 +(((
699 +7FFF089801464160065F97
700 +)))
859 859  
860 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
702 +(((
703 +**Ext sensor data**=0x7FFF/100=327.67
704 +)))
861 861  
862 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
706 +(((
707 +**Temp**=0x088E/100=22.00
708 +)))
863 863  
864 -
865 -==== 2.3.3.11  BH1750 Illumination Sensor ====
866 -
867 -
868 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
869 -
870 -[[image:image-20230512172447-4.png||height="416" width="712"]]
871 -
872 -
873 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
874 -
875 -
876 -==== 2.3.3.12  PWM MOD ====
877 -
878 -
879 -* (((
880 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
710 +(((
711 +**Hum**=0x014B/10=32.6
881 881  )))
882 -* (((
883 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
884 -)))
885 885  
886 - [[image:image-20230817183249-3.png||height="320" width="417"]]
887 -
888 -* (((
889 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
714 +(((
715 +**poll message flag & Ext**=0x41,means reply data,Ext=1
890 890  )))
891 -* (((
892 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
893 893  
894 -
895 -
718 +(((
719 +**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03
896 896  )))
897 897  
898 -==== 2.3.3.13  Working MOD ====
899 899  
723 +(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的
900 900  
901 -The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
725 +== 2.6 Temperature Alarm Feature ==
902 902  
903 -User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
904 904  
905 -Case 7^^th^^ Byte >> 2 & 0x1f:
728 +S31x-LB work flow with Alarm feature.
906 906  
907 -* 0: MOD1
908 -* 1: MOD2
909 -* 2: MOD3
910 -* 3: MOD4
911 -* 4: MOD5
912 -* 5: MOD6
913 -* 6: MOD7
914 -* 7: MOD8
915 -* 8: MOD9
916 -* 9: MOD10
917 917  
918 -== 2.4 Payload Decoder file ==
731 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]]
919 919  
920 920  
921 -In TTN, use can add a custom payload so it shows friendly reading
734 +== 2.7 Frequency Plans ==
922 922  
923 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
924 924  
925 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
737 +The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
926 926  
927 -
928 -== 2.5 Frequency Plans ==
929 -
930 -
931 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
932 -
933 933  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
934 934  
935 935  
936 -= 3. Configure SN50v3-LB =
742 += 3. Configure S31x-LB =
937 937  
938 938  == 3.1 Configure Methods ==
939 939  
940 940  
941 -SN50v3-LB supports below configure method:
747 +S31x-LB supports below configure method:
942 942  
943 943  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
944 944  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -957,10 +957,10 @@
957 957  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
958 958  
959 959  
960 -== 3.3 Commands special design for SN50v3-LB ==
766 +== 3.3 Commands special design for S31x-LB ==
961 961  
962 962  
963 -These commands only valid for SN50v3-LB, as below:
769 +These commands only valid for S31x-LB, as below:
964 964  
965 965  
966 966  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -971,7 +971,7 @@
971 971  (% style="color:blue" %)**AT Command: AT+TDC**
972 972  
973 973  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
974 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
780 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
975 975  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
976 976  30000
977 977  OK
... ... @@ -994,182 +994,115 @@
994 994  === 3.3.2 Get Device Status ===
995 995  
996 996  
997 -Send a LoRaWAN downlink to ask the device to send its status.
803 +Send a LoRaWAN downlink to ask device send Alarm settings.
998 998  
999 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
805 +(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
1000 1000  
1001 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
807 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
1002 1002  
1003 1003  
1004 -=== 3.3.3 Set Interrupt Mode ===
810 +=== 3.3.3 Set Temperature Alarm Threshold ===
1005 1005  
812 +* (% style="color:blue" %)**AT Command:**
1006 1006  
1007 -Feature, Set Interrupt mode for GPIO_EXIT.
814 +(% style="color:#037691" %)**AT+SHTEMP=min,max**
1008 1008  
1009 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
816 +* When min=0, and max≠0, Alarm higher than max
817 +* When min≠0, and max=0, Alarm lower than min
818 +* When min≠0 and max≠0, Alarm higher than max or lower than min
1010 1010  
1011 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1012 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1013 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1014 -0
1015 -OK
1016 -the mode is 0 =Disable Interrupt
1017 -)))
1018 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
1019 -Set Transmit Interval
1020 -0. (Disable Interrupt),
1021 -~1. (Trigger by rising and falling edge)
1022 -2. (Trigger by falling edge)
1023 -3. (Trigger by rising edge)
1024 -)))|(% style="width:157px" %)OK
1025 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1026 -Set Transmit Interval
1027 -trigger by rising edge.
1028 -)))|(% style="width:157px" %)OK
1029 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
820 +Example:
1030 1030  
1031 -(% style="color:blue" %)**Downlink Command: 0x06**
822 + AT+SHTEMP=0,30   ~/~/ Alarm when temperature higher than 30.
1032 1032  
1033 -Format: Command Code (0x06) followed by 3 bytes.
824 +* (% style="color:blue" %)**Downlink Payload:**
1034 1034  
1035 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
826 +(% style="color:#037691" %)**0x(0C 01 00 1E)**  (%%) ~/~/ Set AT+SHTEMP=0,30
1036 1036  
1037 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1038 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1039 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1040 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
828 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)**
1041 1041  
1042 -=== 3.3.4 Set Power Output Duration ===
1043 1043  
831 +=== 3.3.4 Set Humidity Alarm Threshold ===
1044 1044  
1045 -Control the output duration 5V . Before each sampling, device will
833 +* (% style="color:blue" %)**AT Command:**
1046 1046  
1047 -~1. first enable the power output to external sensor,
835 +(% style="color:#037691" %)**AT+SHHUM=min,max**
1048 1048  
1049 -2. keep it on as per duration, read sensor value and construct uplink payload
837 +* When min=0, and max≠0, Alarm higher than max
838 +* When min≠0, and max=0, Alarm lower than min
839 +* When min≠0 and max≠0, Alarm higher than max or lower than min
1050 1050  
1051 -3. final, close the power output.
841 +Example:
1052 1052  
1053 -(% style="color:blue" %)**AT Command: AT+5VT**
843 + AT+SHHUM=70,0  ~/~/ Alarm when humidity lower than 70%.
1054 1054  
1055 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1056 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1057 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1058 -500(default)
1059 -OK
1060 -)))
1061 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1062 -Close after a delay of 1000 milliseconds.
1063 -)))|(% style="width:157px" %)OK
845 +* (% style="color:blue" %)**Downlink Payload:**
1064 1064  
1065 -(% style="color:blue" %)**Downlink Command: 0x07**
847 +(% style="color:#037691" %)**0x(0C 02 46 00)**(%%)  ~/~/ Set AT+SHTHUM=70,0
1066 1066  
1067 -Format: Command Code (0x07) followed by 2 bytes.
849 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))**
1068 1068  
1069 -The first and second bytes are the time to turn on.
1070 1070  
1071 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1072 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
852 +=== 3.3.5 Set Alarm Interval ===
1073 1073  
1074 -=== 3.3.5 Set Weighing parameters ===
854 +The shortest time of two Alarm packet. (unit: min)
1075 1075  
856 +* (% style="color:blue" %)**AT Command:**
1076 1076  
1077 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
858 +(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes.
1078 1078  
1079 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
860 +* (% style="color:blue" %)**Downlink Payload:**
1080 1080  
1081 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1082 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1083 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1084 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1085 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
862 +(% style="color:#037691" %)**0x(0D 00 1E)**(%%)     **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes
1086 1086  
1087 -(% style="color:blue" %)**Downlink Command: 0x08**
1088 1088  
1089 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
865 +=== 3.3.6 Get Alarm settings ===
1090 1090  
1091 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1092 1092  
1093 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
868 +Send a LoRaWAN downlink to ask device send Alarm settings.
1094 1094  
1095 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1096 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1097 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
870 +* (% style="color:#037691" %)**Downlink Payload:  **(%%)0x0E 01
1098 1098  
1099 -=== 3.3.6 Set Digital pulse count value ===
872 +**Example:**
1100 1100  
874 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]
1101 1101  
1102 -Feature: Set the pulse count value.
1103 1103  
1104 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
877 +**Explain:**
1105 1105  
1106 -(% style="color:blue" %)**AT Command: AT+SETCNT**
879 +* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message.
1107 1107  
1108 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1109 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1110 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1111 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
881 +=== 3.3.7 Set Interrupt Mode ===
1112 1112  
1113 -(% style="color:blue" %)**Downlink Command: 0x09**
1114 1114  
1115 -Format: Command Code (0x09) followed by 5 bytes.
884 +Feature, Set Interrupt mode for GPIO_EXIT.
1116 1116  
1117 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
886 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1118 1118  
1119 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1120 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1121 -
1122 -=== 3.3.7 Set Workmode ===
1123 -
1124 -
1125 -Feature: Switch working mode.
1126 -
1127 -(% style="color:blue" %)**AT Command: AT+MOD**
1128 -
1129 1129  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1130 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1131 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
889 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
890 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
891 +0
1132 1132  OK
893 +the mode is 0 =Disable Interrupt
1133 1133  )))
1134 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1135 -OK
1136 -Attention:Take effect after ATZ
1137 -)))
895 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
896 +Set Transmit Interval
897 +0. (Disable Interrupt),
898 +~1. (Trigger by rising and falling edge)
899 +2. (Trigger by falling edge)
900 +3. (Trigger by rising edge)
901 +)))|(% style="width:157px" %)OK
1138 1138  
1139 -(% style="color:blue" %)**Downlink Command: 0x0A**
903 +(% style="color:blue" %)**Downlink Command: 0x06**
1140 1140  
1141 -Format: Command Code (0x0A) followed by 1 bytes.
905 +Format: Command Code (0x06) followed by 3 bytes.
1142 1142  
1143 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1144 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
907 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1145 1145  
1146 -=== 3.3.8 PWM setting ===
909 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
910 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1147 1147  
1148 -
1149 -Feature: Set the time acquisition unit for PWM input capture.
1150 -
1151 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1152 -
1153 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1154 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1155 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1156 -0(default)
1157 -
1158 -OK
1159 -)))
1160 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1161 -OK
1162 -
1163 -)))
1164 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1165 -
1166 -(% style="color:blue" %)**Downlink Command: 0x0C**
1167 -
1168 -Format: Command Code (0x0C) followed by 1 bytes.
1169 -
1170 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1171 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1172 -
1173 1173  = 4. Battery & Power Consumption =
1174 1174  
1175 1175  
... ... @@ -1182,43 +1182,24 @@
1182 1182  
1183 1183  
1184 1184  (% class="wikigeneratedid" %)
1185 -**User can change firmware SN50v3-LB to:**
924 +User can change firmware SN50v3-LB to:
1186 1186  
1187 1187  * Change Frequency band/ region.
1188 1188  * Update with new features.
1189 1189  * Fix bugs.
1190 1190  
1191 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
930 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1192 1192  
1193 -**Methods to Update Firmware:**
1194 1194  
1195 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1196 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
933 +Methods to Update Firmware:
1197 1197  
935 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
936 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
937 +
1198 1198  = 6. FAQ =
1199 1199  
1200 -== 6.1 Where can i find source code of SN50v3-LB? ==
1201 1201  
1202 1202  
1203 -* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1204 -* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1205 -
1206 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1207 -
1208 -
1209 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1210 -
1211 -
1212 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1213 -
1214 -
1215 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1216 -
1217 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1218 -
1219 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1220 -
1221 -
1222 1222  = 7. Order Info =
1223 1223  
1224 1224  
... ... @@ -1244,7 +1244,6 @@
1244 1244  
1245 1245  = 8. ​Packing Info =
1246 1246  
1247 -
1248 1248  (% style="color:#037691" %)**Package Includes**:
1249 1249  
1250 1250  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1260,5 +1260,4 @@
1260 1260  
1261 1261  
1262 1262  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1263 -
1264 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
982 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230512163509-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20230512164658-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512170701-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.5 MB
Content
image-20230512172447-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512173758-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.1 MB
Content
image-20230512173903-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180609-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180718-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512181814-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.2 MB
Content
image-20230513084523-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -611.3 KB
Content
image-20230513102034-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -607.1 KB
Content
image-20230513103633-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -595.5 KB
Content
image-20230513105207-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -384.7 KB
Content
image-20230513105351-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20230513110214-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -172.7 KB
Content
image-20230513111203-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -79.9 KB
Content
image-20230513111231-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
image-20230513111255-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0