Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 6 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor Node User Manual 1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual - Content
-
... ... @@ -1,10 +1,15 @@ 1 + 2 + 1 1 (% style="text-align:center" %) 2 -[[image:image-202 30515135611-1.jpeg||height="589" width="589"]]4 +[[image:image-20240103095714-2.png]] 3 3 4 4 5 5 6 -**Table of Contents:** 7 7 9 + 10 + 11 +**Table of Contents:** 12 + 8 8 {{toc/}} 9 9 10 10 ... ... @@ -14,18 +14,18 @@ 14 14 15 15 = 1. Introduction = 16 16 17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node == 22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node == 18 18 19 19 20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%) or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphonedetection,andso on.27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 23 23 24 -(% style="color:blue" %)** SN50V3-LB **(%%)has a powerful48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors. 25 25 26 -(% style="color:blue" %)** SN50V3-LB**(%%) has abuilt-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining. 27 27 28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 30 == 1.2 Features == 31 31 ... ... @@ -38,15 +38,15 @@ 38 38 * Support wireless OTA update firmware 39 39 * Uplink on periodically 40 40 * Downlink to change configure 41 -* 8500mAh Battery for long term use 46 +* 8500mAh Li/SOCl2 battery (SN50v3-LB) 47 +* Solar panel + 3000mAh Li-on battery (SN50v3-LS) 42 42 43 - 44 44 == 1.3 Specification == 45 45 46 46 47 47 (% style="color:#037691" %)**Common DC Characteristics:** 48 48 49 -* Supply Voltage: built in8500mAh Li-SOCI2battery , 2.5v ~~ 3.6v54 +* Supply Voltage: Built- in battery , 2.5v ~~ 3.6v 50 50 * Operating Temperature: -40 ~~ 85°C 51 51 52 52 (% style="color:#037691" %)**I/O Interface:** ... ... @@ -78,7 +78,6 @@ 78 78 * Sleep Mode: 5uA @ 3.3v 79 79 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 80 80 81 - 82 82 == 1.4 Sleep mode and working mode == 83 83 84 84 ... ... @@ -90,11 +90,11 @@ 90 90 == 1.5 Button & LEDs == 91 91 92 92 93 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 97 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]] 94 94 95 95 96 96 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 97 -|=(% style="width: 167px;background-color:# D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**101 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 98 98 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 99 99 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 100 100 Meanwhile, BLE module will be active and user can connect via BLE to configure device. ... ... @@ -106,11 +106,10 @@ 106 106 ))) 107 107 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 108 108 109 - 110 110 == 1.6 BLE connection == 111 111 112 112 113 -SN50v3-LB supports BLE remote configure. 116 +SN50v3-LB/LS supports BLE remote configure. 114 114 115 115 116 116 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: ... ... @@ -130,18 +130,23 @@ 130 130 131 131 == 1.8 Mechanical == 132 132 136 +=== 1.8.1 for LB version === 133 133 134 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 135 135 136 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 139 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 137 137 141 + 138 138 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 139 139 144 +=== 1.8.2 for LS version === 140 140 146 +[[image:image-20231231203439-3.png||height="385" width="886"]] 147 + 148 + 141 141 == 1.9 Hole Option == 142 142 143 143 144 -SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 152 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 145 145 146 146 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] 147 147 ... ... @@ -148,12 +148,12 @@ 148 148 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]] 149 149 150 150 151 -= 2. Configure SN50v3-LB to connect to LoRaWAN network = 159 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network = 152 152 153 153 == 2.1 How it works == 154 154 155 155 156 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 164 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 157 157 158 158 159 159 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -164,9 +164,9 @@ 164 164 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 165 165 166 166 167 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. 175 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS. 168 168 169 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below: 177 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below: 170 170 171 171 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]] 172 172 ... ... @@ -195,10 +195,10 @@ 195 195 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 196 196 197 197 198 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB 206 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS 199 199 200 200 201 -Press the button for 5 seconds to activate the SN50v3-LB. 209 +Press the button for 5 seconds to activate the SN50v3-LB/LS. 202 202 203 203 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 204 204 ... ... @@ -210,13 +210,13 @@ 210 210 === 2.3.1 Device Status, FPORT~=5 === 211 211 212 212 213 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 221 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server. 214 214 215 215 The Payload format is as below. 216 216 217 217 218 218 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 219 -|(% colspan="6" style="background-color:# d9e2f3;#0070c0" %)**Device Status (FPORT=5)**227 +|(% colspan="6" style="background-color:#4F81BD;color:white" %)**Device Status (FPORT=5)** 220 220 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 221 221 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 222 222 ... ... @@ -223,7 +223,7 @@ 223 223 Example parse in TTNv3 224 224 225 225 226 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 234 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C 227 227 228 228 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 229 229 ... ... @@ -279,7 +279,7 @@ 279 279 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 280 280 281 281 282 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 290 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes. 283 283 284 284 For example: 285 285 ... ... @@ -288,7 +288,7 @@ 288 288 289 289 (% style="color:red" %) **Important Notice:** 290 290 291 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 299 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload. 292 292 293 293 2. All modes share the same Payload Explanation from HERE. 294 294 ... ... @@ -301,7 +301,7 @@ 301 301 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 302 302 303 303 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 304 -|(% style="background-color:# d9e2f3;#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3;#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3;#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:80px" %)**2**312 +|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:90px" %)**1**|(% style="background-color:#4F81BD;color:white; width:130px" %)**2**|(% style="background-color:#4F81BD;color:white; width:80px" %)**2** 305 305 |Value|Bat|(% style="width:191px" %)((( 306 306 Temperature(DS18B20)(PC13) 307 307 )))|(% style="width:78px" %)((( ... ... @@ -323,7 +323,7 @@ 323 323 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 324 324 325 325 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 326 -|(% style="background-color:# d9e2f3;#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3;#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3;#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:40px" %)**2**334 +|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:30px" %)**2**|(% style="background-color:#4F81BD;color:white; width:110px" %)**2**|(% style="background-color:#4F81BD;color:white; width:40px" %)**2**|(% style="background-color:#4F81BD;color:white; width:110px" %)**1**|(% style="background-color:#4F81BD;color:white; width:140px" %)**2**|(% style="background-color:#4F81BD;color:white; width:40px" %)**2** 327 327 |Value|BAT|(% style="width:196px" %)((( 328 328 Temperature(DS18B20)(PC13) 329 329 )))|(% style="width:87px" %)((( ... ... @@ -353,7 +353,7 @@ 353 353 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 354 354 355 355 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 356 -|(% style="background-color:# d9e2f3;#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3;#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3;#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:80px" %)**2**364 +|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**1**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:120px" %)**2**|(% style="background-color:#4F81BD;color:white; width:80px" %)**2** 357 357 |Value|BAT|(% style="width:183px" %)((( 358 358 Temperature(DS18B20)(PC13) 359 359 )))|(% style="width:173px" %)((( ... ... @@ -388,9 +388,9 @@ 388 388 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 389 389 390 390 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 391 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((399 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 392 392 **Size(bytes)** 393 -)))|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1401 +)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 100px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1 394 394 |Value|(% style="width:68px" %)((( 395 395 ADC1(PA4) 396 396 )))|(% style="width:75px" %)((( ... ... @@ -414,7 +414,7 @@ 414 414 This mode has total 11 bytes. As shown below: 415 415 416 416 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 417 -|(% style="background-color:# d9e2f3;#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3;#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3;#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:100px" %)**2**425 +|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**1**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2** 418 418 |Value|BAT|(% style="width:186px" %)((( 419 419 Temperature1(DS18B20)(PC13) 420 420 )))|(% style="width:82px" %)((( ... ... @@ -455,9 +455,9 @@ 455 455 Check the response of this command and adjust the value to match the real value for thing. 456 456 457 457 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 458 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((466 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 459 459 **Size(bytes)** 460 -)))|=(% style="width: 20px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**468 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4** 461 461 |Value|BAT|(% style="width:193px" %)((( 462 462 Temperature(DS18B20)(PC13) 463 463 )))|(% style="width:85px" %)((( ... ... @@ -482,7 +482,7 @@ 482 482 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 483 483 484 484 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 485 -|=(% style="width: 60px;background-color:# D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**493 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**4** 486 486 |Value|BAT|(% style="width:256px" %)((( 487 487 Temperature(DS18B20)(PC13) 488 488 )))|(% style="width:108px" %)((( ... ... @@ -500,9 +500,9 @@ 500 500 501 501 502 502 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 503 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((511 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 504 504 **Size(bytes)** 505 -)))|=(% style="width: 20px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2513 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2 506 506 |Value|BAT|(% style="width:188px" %)((( 507 507 Temperature(DS18B20) 508 508 (PC13) ... ... @@ -519,9 +519,9 @@ 519 519 520 520 521 521 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 522 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((530 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 523 523 **Size(bytes)** 524 -)))|=(% style="width: 30px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2532 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 120px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)2 525 525 |Value|BAT|(% style="width:207px" %)((( 526 526 Temperature(DS18B20) 527 527 (PC13) ... ... @@ -542,9 +542,9 @@ 542 542 543 543 544 544 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 545 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((553 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 546 546 **Size(bytes)** 547 -)))|=(% style="width: 20px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4555 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4 548 548 |Value|BAT|((( 549 549 Temperature 550 550 (DS18B20)(PC13) ... ... @@ -581,9 +581,11 @@ 581 581 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 582 582 583 583 584 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 592 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ==== 585 585 586 586 595 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 596 + 587 587 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 588 588 589 589 [[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] ... ... @@ -594,8 +594,8 @@ 594 594 595 595 [[image:image-20230817172209-2.png||height="439" width="683"]] 596 596 597 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width: 690px" %)598 -|(% style="background-color:# d9e2f3;#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3;#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3;#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3;#0070c0; width:89px" %)**2**607 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 608 +|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:135px" %)**1**|(% style="background-color:#4F81BD;color:white; width:70px" %)**2**|(% style="background-color:#4F81BD;color:white; width:90px" %)**2** 599 599 |Value|Bat|(% style="width:191px" %)((( 600 600 Temperature(DS18B20)(PC13) 601 601 )))|(% style="width:78px" %)((( ... ... @@ -602,7 +602,6 @@ 602 602 ADC(PA4) 603 603 )))|(% style="width:135px" %)((( 604 604 PWM_Setting 605 - 606 606 &Digital Interrupt(PA8) 607 607 )))|(% style="width:70px" %)((( 608 608 Pulse period ... ... @@ -632,9 +632,38 @@ 632 632 [[image:image-20230818092200-1.png||height="344" width="627"]] 633 633 634 634 635 -===== 2.3.2.10.b Downlink, PWM output =====644 +===== 2.3.2.10.b Uplink, PWM output ===== 636 636 637 637 647 +[[image:image-20230817172209-2.png||height="439" width="683"]] 648 + 649 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 650 + 651 +a is the time delay of the output, the unit is ms. 652 + 653 +b is the output frequency, the unit is HZ. 654 + 655 +c is the duty cycle of the output, the unit is %. 656 + 657 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 658 + 659 +aa is the time delay of the output, the unit is ms. 660 + 661 +bb is the output frequency, the unit is HZ. 662 + 663 +cc is the duty cycle of the output, the unit is %. 664 + 665 + 666 +For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 667 + 668 +The oscilloscope displays as follows: 669 + 670 +[[image:image-20231213102404-1.jpeg||height="688" width="821"]] 671 + 672 + 673 +===== 2.3.2.10.c Downlink, PWM output ===== 674 + 675 + 638 638 [[image:image-20230817173800-3.png||height="412" width="685"]] 639 639 640 640 Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** ... ... @@ -650,7 +650,7 @@ 650 650 651 651 The oscilloscope displays as follows: 652 652 653 -[[image:image-20230817173858-5.png||height="6 94" width="921"]]691 +[[image:image-20230817173858-5.png||height="634" width="843"]] 654 654 655 655 656 656 === 2.3.3 Decode payload === ... ... @@ -662,13 +662,13 @@ 662 662 663 663 The payload decoder function for TTN V3 are here: 664 664 665 -SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 703 +SN50v3-LB/LS TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 666 666 667 667 668 668 ==== 2.3.3.1 Battery Info ==== 669 669 670 670 671 -Check the battery voltage for SN50v3-LB. 709 +Check the battery voltage for SN50v3-LB/LS. 672 672 673 673 Ex1: 0x0B45 = 2885mV 674 674 ... ... @@ -730,10 +730,12 @@ 730 730 731 731 [[image:image-20230811113449-1.png||height="370" width="608"]] 732 732 771 + 772 + 733 733 ==== 2.3.3.5 Digital Interrupt ==== 734 734 735 735 736 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 776 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server. 737 737 738 738 (% style="color:blue" %)** Interrupt connection method:** 739 739 ... ... @@ -746,18 +746,18 @@ 746 746 747 747 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 748 748 749 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 789 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window. 750 750 751 751 752 752 (% style="color:blue" %)**Below is the installation example:** 753 753 754 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 794 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows: 755 755 756 756 * ((( 757 -One pin to SN50v3-LB's PA8 pin 797 +One pin to SN50v3-LB/LS's PA8 pin 758 758 ))) 759 759 * ((( 760 -The other pin to SN50v3-LB's VDD pin 800 +The other pin to SN50v3-LB/LS's VDD pin 761 761 ))) 762 762 763 763 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -793,7 +793,7 @@ 793 793 794 794 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 795 795 796 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 836 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.** 797 797 798 798 799 799 Below is the connection to SHT20/ SHT31. The connection is as below: ... ... @@ -827,7 +827,7 @@ 827 827 828 828 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 829 829 830 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 870 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 831 831 832 832 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 833 833 ... ... @@ -836,7 +836,7 @@ 836 836 [[image:image-20230512173903-6.png||height="596" width="715"]] 837 837 838 838 839 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 879 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 840 840 841 841 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 842 842 ... ... @@ -848,13 +848,13 @@ 848 848 ==== 2.3.3.9 Battery Output - BAT pin ==== 849 849 850 850 851 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 891 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon. 852 852 853 853 854 854 ==== 2.3.3.10 +5V Output ==== 855 855 856 856 857 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 897 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 858 858 859 859 The 5V output time can be controlled by AT Command. 860 860 ... ... @@ -893,11 +893,18 @@ 893 893 ))) 894 894 * ((( 895 895 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 936 +))) 937 +* ((( 938 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 896 896 940 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 897 897 898 - 942 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used. 943 + 944 +b) If the output duration is more than 30 seconds, better to use external power source. 899 899 ))) 900 900 947 + 901 901 ==== 2.3.3.13 Working MOD ==== 902 902 903 903 ... ... @@ -918,7 +918,6 @@ 918 918 * 8: MOD9 919 919 * 9: MOD10 920 920 921 - 922 922 == 2.4 Payload Decoder file == 923 923 924 924 ... ... @@ -932,23 +932,22 @@ 932 932 == 2.5 Frequency Plans == 933 933 934 934 935 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 981 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 936 936 937 937 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 938 938 939 939 940 -= 3. Configure SN50v3-LB = 986 += 3. Configure SN50v3-LB/LS = 941 941 942 942 == 3.1 Configure Methods == 943 943 944 944 945 -SN50v3-LB supports below configure method: 991 +SN50v3-LB/LS supports below configure method: 946 946 947 947 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 948 948 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 949 949 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 950 950 951 - 952 952 == 3.2 General Commands == 953 953 954 954 ... ... @@ -962,10 +962,10 @@ 962 962 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 963 963 964 964 965 -== 3.3 Commands special design for SN50v3-LB == 1010 +== 3.3 Commands special design for SN50v3-LB/LS == 966 966 967 967 968 -These commands only valid for SN50v3-LB, as below: 1013 +These commands only valid for SN50v3-LB/LS, as below: 969 969 970 970 971 971 === 3.3.1 Set Transmit Interval Time === ... ... @@ -976,7 +976,7 @@ 976 976 (% style="color:blue" %)**AT Command: AT+TDC** 977 977 978 978 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 979 -|=(% style="width: 156px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**1024 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response** 980 980 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 981 981 30000 982 982 OK ... ... @@ -996,7 +996,6 @@ 996 996 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 997 997 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 998 998 999 - 1000 1000 === 3.3.2 Get Device Status === 1001 1001 1002 1002 ... ... @@ -1012,10 +1012,10 @@ 1012 1012 1013 1013 Feature, Set Interrupt mode for GPIO_EXIT. 1014 1014 1015 -(% style="color:blue" %)**AT Command: AT+INTMOD1 ,AT+INTMOD2,AT+INTMOD3**1059 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 1016 1016 1017 1017 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1018 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1062 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1019 1019 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1020 1020 0 1021 1021 OK ... ... @@ -1045,7 +1045,6 @@ 1045 1045 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 1046 1046 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 1047 1047 1048 - 1049 1049 === 3.3.4 Set Power Output Duration === 1050 1050 1051 1051 ... ... @@ -1060,7 +1060,7 @@ 1060 1060 (% style="color:blue" %)**AT Command: AT+5VT** 1061 1061 1062 1062 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1063 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1106 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1064 1064 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1065 1065 500(default) 1066 1066 OK ... ... @@ -1078,7 +1078,6 @@ 1078 1078 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1079 1079 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1080 1080 1081 - 1082 1082 === 3.3.5 Set Weighing parameters === 1083 1083 1084 1084 ... ... @@ -1087,9 +1087,9 @@ 1087 1087 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1088 1088 1089 1089 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1090 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1132 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1091 1091 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1092 -|(% style="width:154px" %)AT+WEIGAP= ?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)1134 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1093 1093 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 1094 1094 1095 1095 (% style="color:blue" %)**Downlink Command: 0x08** ... ... @@ -1104,7 +1104,6 @@ 1104 1104 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1105 1105 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1106 1106 1107 - 1108 1108 === 3.3.6 Set Digital pulse count value === 1109 1109 1110 1110 ... ... @@ -1115,7 +1115,7 @@ 1115 1115 (% style="color:blue" %)**AT Command: AT+SETCNT** 1116 1116 1117 1117 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1118 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1159 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1119 1119 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1120 1120 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1121 1121 ... ... @@ -1128,7 +1128,6 @@ 1128 1128 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1129 1129 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1130 1130 1131 - 1132 1132 === 3.3.7 Set Workmode === 1133 1133 1134 1134 ... ... @@ -1137,7 +1137,7 @@ 1137 1137 (% style="color:blue" %)**AT Command: AT+MOD** 1138 1138 1139 1139 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1140 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1180 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1141 1141 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1142 1142 OK 1143 1143 ))) ... ... @@ -1157,22 +1157,21 @@ 1157 1157 === 3.3.8 PWM setting === 1158 1158 1159 1159 1160 -Feature: Set the time acquisition unit for PWM input capture. 1200 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture. 1161 1161 1162 1162 (% style="color:blue" %)**AT Command: AT+PWMSET** 1163 1163 1164 1164 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1165 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width:197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1166 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width: 196px" %)0|(% style="width:157px" %)(((1205 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response** 1206 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1167 1167 0(default) 1168 - 1169 1169 OK 1170 1170 ))) 1171 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width: 196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)(((1210 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1172 1172 OK 1173 1173 1174 1174 ))) 1175 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width: 196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK1214 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1176 1176 1177 1177 (% style="color:blue" %)**Downlink Command: 0x0C** 1178 1178 ... ... @@ -1181,12 +1181,75 @@ 1181 1181 * Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1182 1182 * Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1183 1183 1223 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle. 1184 1184 1185 - =4. Battery& Power Consumption=1225 +(% style="color:blue" %)**AT Command: AT+PWMOUT** 1186 1186 1227 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1228 +|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 135px; background-color: #4F81BD;color:white" %)**Response** 1229 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1230 +0,0,0(default) 1187 1187 1188 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1232 +OK 1233 +))) 1234 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1235 +OK 1236 + 1237 +))) 1238 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1239 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1189 1189 1241 + 1242 +)))|(% style="width:137px" %)((( 1243 +OK 1244 +))) 1245 + 1246 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1247 +|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters** 1248 +|(% colspan="1" rowspan="3" style="width:155px" %)((( 1249 +AT+PWMOUT=a,b,c 1250 + 1251 + 1252 +)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1253 +Set PWM output time, output frequency and output duty cycle. 1254 + 1255 +((( 1256 + 1257 +))) 1258 + 1259 +((( 1260 + 1261 +))) 1262 +)))|(% style="width:242px" %)((( 1263 +a: Output time (unit: seconds) 1264 + 1265 +The value ranges from 0 to 65535. 1266 + 1267 +When a=65535, PWM will always output. 1268 +))) 1269 +|(% style="width:242px" %)((( 1270 +b: Output frequency (unit: HZ) 1271 +))) 1272 +|(% style="width:242px" %)((( 1273 +c: Output duty cycle (unit: %) 1274 + 1275 +The value ranges from 0 to 100. 1276 +))) 1277 + 1278 +(% style="color:blue" %)**Downlink Command: 0x0B01** 1279 + 1280 +Format: Command Code (0x0B01) followed by 6 bytes. 1281 + 1282 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1283 + 1284 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1285 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1286 + 1287 += 4. Battery & Power Cons = 1288 + 1289 + 1290 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace. 1291 + 1190 1190 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 1191 1191 1192 1192 ... ... @@ -1194,7 +1194,7 @@ 1194 1194 1195 1195 1196 1196 (% class="wikigeneratedid" %) 1197 -**User can change firmware SN50v3-LB to:** 1299 +**User can change firmware SN50v3-LB/LS to:** 1198 1198 1199 1199 * Change Frequency band/ region. 1200 1200 * Update with new features. ... ... @@ -1207,26 +1207,24 @@ 1207 1207 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1208 1208 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1209 1209 1210 - 1211 1211 = 6. FAQ = 1212 1212 1213 -== 6.1 Where can i find source code of SN50v3-LB? == 1314 +== 6.1 Where can i find source code of SN50v3-LB/LS? == 1214 1214 1215 1215 1216 1216 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1217 1217 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1218 1218 1320 +== 6.2 How to generate PWM Output in SN50v3-LB/LS? == 1219 1219 1220 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1221 1221 1222 - 1223 1223 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1224 1224 1225 1225 1226 -== 6.3 How to put several sensors to a SN50v3-LB? == 1326 +== 6.3 How to put several sensors to a SN50v3-LB/LS? == 1227 1227 1228 1228 1229 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1329 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1230 1230 1231 1231 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1232 1232 ... ... @@ -1236,7 +1236,7 @@ 1236 1236 = 7. Order Info = 1237 1237 1238 1238 1239 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** 1339 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY** 1240 1240 1241 1241 (% style="color:red" %)**XX**(%%): The default frequency band 1242 1242 ... ... @@ -1256,13 +1256,12 @@ 1256 1256 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1257 1257 * (% style="color:red" %)**NH**(%%): No Hole 1258 1258 1259 - 1260 1260 = 8. Packing Info = 1261 1261 1262 1262 1263 1263 (% style="color:#037691" %)**Package Includes**: 1264 1264 1265 -* SN50v3-LB LoRaWAN Generic Node 1364 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node 1266 1266 1267 1267 (% style="color:#037691" %)**Dimension and weight**: 1268 1268 ... ... @@ -1271,7 +1271,6 @@ 1271 1271 * Package Size / pcs : cm 1272 1272 * Weight / pcs : g 1273 1273 1274 - 1275 1275 = 9. Support = 1276 1276 1277 1277
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +35.4 KB - Content
- image-20231231203439-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.6 KB - Content
- image-20240103095513-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +577.4 KB - Content
- image-20240103095714-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +230.1 KB - Content