<
From version < 74.6 >
edited by Xiaoling
on 2023/09/26 08:50
To version < 87.14 >
edited by Xiaoling
on 2024/01/03 14:10
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Content
... ... @@ -1,10 +1,15 @@
1 +
2 +
1 1  (% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
4 +[[image:image-20240103095714-2.png]]
3 3  
4 4  
5 5  
6 -**Table of Contents:**
7 7  
9 +
10 +
11 +**Table of Contents:**
12 +
8 8  {{toc/}}
9 9  
10 10  
... ... @@ -14,18 +14,18 @@
14 14  
15 15  = 1. Introduction =
16 16  
17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
18 18  
19 19  
20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, and so on.
27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
24 -(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
25 25  
26 -(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
27 27  
28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 30  == 1.2 ​Features ==
31 31  
... ... @@ -38,15 +38,15 @@
38 38  * Support wireless OTA update firmware
39 39  * Uplink on periodically
40 40  * Downlink to change configure
41 -* 8500mAh Battery for long term use
46 +* 8500mAh Li/SOCl2 battery (SN50v3-LB)
47 +* Solar panel + 3000mAh Li-on battery (SN50v3-LS)
42 42  
43 -
44 44  == 1.3 Specification ==
45 45  
46 46  
47 47  (% style="color:#037691" %)**Common DC Characteristics:**
48 48  
49 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
54 +* Supply Voltage: Built- in battery , 2.5v ~~ 3.6v
50 50  * Operating Temperature: -40 ~~ 85°C
51 51  
52 52  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -78,7 +78,6 @@
78 78  * Sleep Mode: 5uA @ 3.3v
79 79  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
80 80  
81 -
82 82  == 1.4 Sleep mode and working mode ==
83 83  
84 84  
... ... @@ -90,11 +90,11 @@
90 90  == 1.5 Button & LEDs ==
91 91  
92 92  
93 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
97 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
94 94  
95 95  
96 96  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
97 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
101 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
98 98  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
99 99  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
100 100  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -106,11 +106,10 @@
106 106  )))
107 107  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
108 108  
109 -
110 110  == 1.6 BLE connection ==
111 111  
112 112  
113 -SN50v3-LB supports BLE remote configure.
116 +SN50v3-LB/LS supports BLE remote configure.
114 114  
115 115  
116 116  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -130,18 +130,23 @@
130 130  
131 131  == 1.8 Mechanical ==
132 132  
136 +=== 1.8.1 for LB version ===
133 133  
134 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
135 135  
136 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
139 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
137 137  
141 +
138 138  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
139 139  
144 +=== 1.8.2 for LS version ===
140 140  
146 +[[image:image-20231231203439-3.png||height="385" width="886"]]
147 +
148 +
141 141  == 1.9 Hole Option ==
142 142  
143 143  
144 -SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
152 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
145 145  
146 146  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
147 147  
... ... @@ -148,12 +148,12 @@
148 148  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
149 149  
150 150  
151 -= 2. Configure SN50v3-LB to connect to LoRaWAN network =
159 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
152 152  
153 153  == 2.1 How it works ==
154 154  
155 155  
156 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
164 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
157 157  
158 158  
159 159  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -164,9 +164,9 @@
164 164  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
165 165  
166 166  
167 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
175 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
168 168  
169 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
177 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
170 170  
171 171  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
172 172  
... ... @@ -195,10 +195,10 @@
195 195  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
196 196  
197 197  
198 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
206 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
199 199  
200 200  
201 -Press the button for 5 seconds to activate the SN50v3-LB.
209 +Press the button for 5 seconds to activate the SN50v3-LB/LS.
202 202  
203 203  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
204 204  
... ... @@ -210,13 +210,13 @@
210 210  === 2.3.1 Device Status, FPORT~=5 ===
211 211  
212 212  
213 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
221 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
214 214  
215 215  The Payload format is as below.
216 216  
217 217  
218 218  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
219 -|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
227 +|(% colspan="6" style="background-color:#4F81BD;color:white" %)**Device Status (FPORT=5)**
220 220  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
221 221  |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
222 222  
... ... @@ -223,7 +223,7 @@
223 223  Example parse in TTNv3
224 224  
225 225  
226 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
234 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
227 227  
228 228  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
229 229  
... ... @@ -279,7 +279,7 @@
279 279  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
280 280  
281 281  
282 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
290 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
283 283  
284 284  For example:
285 285  
... ... @@ -288,7 +288,7 @@
288 288  
289 289  (% style="color:red" %) **Important Notice:**
290 290  
291 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
299 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
292 292  
293 293  2. All modes share the same Payload Explanation from HERE.
294 294  
... ... @@ -301,7 +301,7 @@
301 301  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
302 302  
303 303  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
304 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
312 +|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:90px" %)**1**|(% style="background-color:#4F81BD;color:white; width:130px" %)**2**|(% style="background-color:#4F81BD;color:white; width:80px" %)**2**
305 305  |Value|Bat|(% style="width:191px" %)(((
306 306  Temperature(DS18B20)(PC13)
307 307  )))|(% style="width:78px" %)(((
... ... @@ -323,7 +323,7 @@
323 323  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
324 324  
325 325  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
326 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
334 +|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:30px" %)**2**|(% style="background-color:#4F81BD;color:white; width:110px" %)**2**|(% style="background-color:#4F81BD;color:white; width:40px" %)**2**|(% style="background-color:#4F81BD;color:white; width:110px" %)**1**|(% style="background-color:#4F81BD;color:white; width:140px" %)**2**|(% style="background-color:#4F81BD;color:white; width:40px" %)**2**
327 327  |Value|BAT|(% style="width:196px" %)(((
328 328  Temperature(DS18B20)(PC13)
329 329  )))|(% style="width:87px" %)(((
... ... @@ -353,7 +353,7 @@
353 353  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
354 354  
355 355  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
356 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
364 +|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**1**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:120px" %)**2**|(% style="background-color:#4F81BD;color:white; width:80px" %)**2**
357 357  |Value|BAT|(% style="width:183px" %)(((
358 358  Temperature(DS18B20)(PC13)
359 359  )))|(% style="width:173px" %)(((
... ... @@ -388,9 +388,9 @@
388 388  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
389 389  
390 390  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
391 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
399 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
392 392  **Size(bytes)**
393 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
401 +)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 100px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
394 394  |Value|(% style="width:68px" %)(((
395 395  ADC1(PA4)
396 396  )))|(% style="width:75px" %)(((
... ... @@ -414,7 +414,7 @@
414 414  This mode has total 11 bytes. As shown below:
415 415  
416 416  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
417 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
425 +|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**1**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**
418 418  |Value|BAT|(% style="width:186px" %)(((
419 419  Temperature1(DS18B20)(PC13)
420 420  )))|(% style="width:82px" %)(((
... ... @@ -455,9 +455,9 @@
455 455  Check the response of this command and adjust the value to match the real value for thing.
456 456  
457 457  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
458 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
466 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
459 459  **Size(bytes)**
460 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
468 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4**
461 461  |Value|BAT|(% style="width:193px" %)(((
462 462  Temperature(DS18B20)(PC13)
463 463  )))|(% style="width:85px" %)(((
... ... @@ -482,7 +482,7 @@
482 482  (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
483 483  
484 484  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
485 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
493 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**4**
486 486  |Value|BAT|(% style="width:256px" %)(((
487 487  Temperature(DS18B20)(PC13)
488 488  )))|(% style="width:108px" %)(((
... ... @@ -500,9 +500,9 @@
500 500  
501 501  
502 502  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
503 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
511 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
504 504  **Size(bytes)**
505 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
513 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
506 506  |Value|BAT|(% style="width:188px" %)(((
507 507  Temperature(DS18B20)
508 508  (PC13)
... ... @@ -519,9 +519,9 @@
519 519  
520 520  
521 521  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
522 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
530 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
523 523  **Size(bytes)**
524 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
532 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 120px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)2
525 525  |Value|BAT|(% style="width:207px" %)(((
526 526  Temperature(DS18B20)
527 527  (PC13)
... ... @@ -542,9 +542,9 @@
542 542  
543 543  
544 544  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
545 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
553 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
546 546  **Size(bytes)**
547 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
555 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4
548 548  |Value|BAT|(((
549 549  Temperature
550 550  (DS18B20)(PC13)
... ... @@ -581,9 +581,11 @@
581 581  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
582 582  
583 583  
584 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
592 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
585 585  
586 586  
595 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
596 +
587 587  In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
588 588  
589 589  [[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
... ... @@ -594,8 +594,8 @@
594 594  
595 595  [[image:image-20230817172209-2.png||height="439" width="683"]]
596 596  
597 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
598 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
607 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
608 +|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:135px" %)**1**|(% style="background-color:#4F81BD;color:white; width:70px" %)**2**|(% style="background-color:#4F81BD;color:white; width:90px" %)**2**
599 599  |Value|Bat|(% style="width:191px" %)(((
600 600  Temperature(DS18B20)(PC13)
601 601  )))|(% style="width:78px" %)(((
... ... @@ -602,7 +602,6 @@
602 602  ADC(PA4)
603 603  )))|(% style="width:135px" %)(((
604 604  PWM_Setting
605 -
606 606  &Digital Interrupt(PA8)
607 607  )))|(% style="width:70px" %)(((
608 608  Pulse period
... ... @@ -632,9 +632,38 @@
632 632  [[image:image-20230818092200-1.png||height="344" width="627"]]
633 633  
634 634  
635 -===== 2.3.2.10.b  Downlink, PWM output =====
644 +===== 2.3.2.10.b  Uplink, PWM output =====
636 636  
637 637  
647 +[[image:image-20230817172209-2.png||height="439" width="683"]]
648 +
649 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
650 +
651 +a is the time delay of the output, the unit is ms.
652 +
653 +b is the output frequency, the unit is HZ.
654 +
655 +c is the duty cycle of the output, the unit is %.
656 +
657 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
658 +
659 +aa is the time delay of the output, the unit is ms.
660 +
661 +bb is the output frequency, the unit is HZ.
662 +
663 +cc is the duty cycle of the output, the unit is %.
664 +
665 +
666 +For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
667 +
668 +The oscilloscope displays as follows:
669 +
670 +[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
671 +
672 +
673 +===== 2.3.2.10.c  Downlink, PWM output =====
674 +
675 +
638 638  [[image:image-20230817173800-3.png||height="412" width="685"]]
639 639  
640 640  Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
... ... @@ -650,7 +650,7 @@
650 650  
651 651  The oscilloscope displays as follows:
652 652  
653 -[[image:image-20230817173858-5.png||height="694" width="921"]]
691 +[[image:image-20230817173858-5.png||height="634" width="843"]]
654 654  
655 655  
656 656  === 2.3.3  ​Decode payload ===
... ... @@ -662,13 +662,13 @@
662 662  
663 663  The payload decoder function for TTN V3 are here:
664 664  
665 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
703 +SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
666 666  
667 667  
668 668  ==== 2.3.3.1 Battery Info ====
669 669  
670 670  
671 -Check the battery voltage for SN50v3-LB.
709 +Check the battery voltage for SN50v3-LB/LS.
672 672  
673 673  Ex1: 0x0B45 = 2885mV
674 674  
... ... @@ -730,10 +730,12 @@
730 730  
731 731  [[image:image-20230811113449-1.png||height="370" width="608"]]
732 732  
771 +
772 +
733 733  ==== 2.3.3.5 Digital Interrupt ====
734 734  
735 735  
736 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
776 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
737 737  
738 738  (% style="color:blue" %)** Interrupt connection method:**
739 739  
... ... @@ -746,18 +746,18 @@
746 746  
747 747  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
748 748  
749 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
789 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
750 750  
751 751  
752 752  (% style="color:blue" %)**Below is the installation example:**
753 753  
754 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
794 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
755 755  
756 756  * (((
757 -One pin to SN50v3-LB's PA8 pin
797 +One pin to SN50v3-LB/LS's PA8 pin
758 758  )))
759 759  * (((
760 -The other pin to SN50v3-LB's VDD pin
800 +The other pin to SN50v3-LB/LS's VDD pin
761 761  )))
762 762  
763 763  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -793,7 +793,7 @@
793 793  
794 794  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
795 795  
796 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
836 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
797 797  
798 798  
799 799  Below is the connection to SHT20/ SHT31. The connection is as below:
... ... @@ -827,7 +827,7 @@
827 827  
828 828  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
829 829  
830 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
870 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
831 831  
832 832  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
833 833  
... ... @@ -836,7 +836,7 @@
836 836  [[image:image-20230512173903-6.png||height="596" width="715"]]
837 837  
838 838  
839 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
879 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
840 840  
841 841  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
842 842  
... ... @@ -848,13 +848,13 @@
848 848  ==== 2.3.3.9  Battery Output - BAT pin ====
849 849  
850 850  
851 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
891 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
852 852  
853 853  
854 854  ==== 2.3.3.10  +5V Output ====
855 855  
856 856  
857 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
897 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
858 858  
859 859  The 5V output time can be controlled by AT Command.
860 860  
... ... @@ -893,11 +893,18 @@
893 893  )))
894 894  * (((
895 895  Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
936 +)))
937 +* (((
938 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
896 896  
940 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
897 897  
898 -
942 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
943 +
944 +b) If the output duration is more than 30 seconds, better to use external power source. 
899 899  )))
900 900  
947 +
901 901  ==== 2.3.3.13  Working MOD ====
902 902  
903 903  
... ... @@ -918,7 +918,6 @@
918 918  * 8: MOD9
919 919  * 9: MOD10
920 920  
921 -
922 922  == 2.4 Payload Decoder file ==
923 923  
924 924  
... ... @@ -932,23 +932,22 @@
932 932  == 2.5 Frequency Plans ==
933 933  
934 934  
935 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
981 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
936 936  
937 937  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
938 938  
939 939  
940 -= 3. Configure SN50v3-LB =
986 += 3. Configure SN50v3-LB/LS =
941 941  
942 942  == 3.1 Configure Methods ==
943 943  
944 944  
945 -SN50v3-LB supports below configure method:
991 +SN50v3-LB/LS supports below configure method:
946 946  
947 947  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
948 948  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
949 949  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
950 950  
951 -
952 952  == 3.2 General Commands ==
953 953  
954 954  
... ... @@ -962,10 +962,10 @@
962 962  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
963 963  
964 964  
965 -== 3.3 Commands special design for SN50v3-LB ==
1010 +== 3.3 Commands special design for SN50v3-LB/LS ==
966 966  
967 967  
968 -These commands only valid for SN50v3-LB, as below:
1013 +These commands only valid for SN50v3-LB/LS, as below:
969 969  
970 970  
971 971  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -976,7 +976,7 @@
976 976  (% style="color:blue" %)**AT Command: AT+TDC**
977 977  
978 978  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
979 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
1024 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
980 980  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
981 981  30000
982 982  OK
... ... @@ -996,7 +996,6 @@
996 996  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
997 997  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
998 998  
999 -
1000 1000  === 3.3.2 Get Device Status ===
1001 1001  
1002 1002  
... ... @@ -1015,7 +1015,7 @@
1015 1015  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1016 1016  
1017 1017  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1018 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1062 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1019 1019  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1020 1020  0
1021 1021  OK
... ... @@ -1045,7 +1045,6 @@
1045 1045  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1046 1046  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1047 1047  
1048 -
1049 1049  === 3.3.4 Set Power Output Duration ===
1050 1050  
1051 1051  
... ... @@ -1060,7 +1060,7 @@
1060 1060  (% style="color:blue" %)**AT Command: AT+5VT**
1061 1061  
1062 1062  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1063 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1106 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1064 1064  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1065 1065  500(default)
1066 1066  OK
... ... @@ -1078,7 +1078,6 @@
1078 1078  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1079 1079  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1080 1080  
1081 -
1082 1082  === 3.3.5 Set Weighing parameters ===
1083 1083  
1084 1084  
... ... @@ -1087,7 +1087,7 @@
1087 1087  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1088 1088  
1089 1089  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1090 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1132 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1091 1091  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1092 1092  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1093 1093  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -1104,7 +1104,6 @@
1104 1104  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1105 1105  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1106 1106  
1107 -
1108 1108  === 3.3.6 Set Digital pulse count value ===
1109 1109  
1110 1110  
... ... @@ -1115,7 +1115,7 @@
1115 1115  (% style="color:blue" %)**AT Command: AT+SETCNT**
1116 1116  
1117 1117  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1118 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1159 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1119 1119  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1120 1120  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1121 1121  
... ... @@ -1128,7 +1128,6 @@
1128 1128  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1129 1129  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1130 1130  
1131 -
1132 1132  === 3.3.7 Set Workmode ===
1133 1133  
1134 1134  
... ... @@ -1137,7 +1137,7 @@
1137 1137  (% style="color:blue" %)**AT Command: AT+MOD**
1138 1138  
1139 1139  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1140 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1180 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1141 1141  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1142 1142  OK
1143 1143  )))
... ... @@ -1153,26 +1153,26 @@
1153 1153  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1154 1154  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1155 1155  
1156 -
1196 +(% id="H3.3.8PWMsetting" %)
1157 1157  === 3.3.8 PWM setting ===
1158 1158  
1159 1159  
1160 -Feature: Set the time acquisition unit for PWM input capture.
1200 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1161 1161  
1162 1162  (% style="color:blue" %)**AT Command: AT+PWMSET**
1163 1163  
1164 1164  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1165 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1166 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1205 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 223px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1206 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1167 1167  0(default)
1168 1168  
1169 1169  OK
1170 1170  )))
1171 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1211 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1172 1172  OK
1173 1173  
1174 1174  )))
1175 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1215 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1176 1176  
1177 1177  (% style="color:blue" %)**Downlink Command: 0x0C**
1178 1178  
... ... @@ -1181,12 +1181,75 @@
1181 1181  * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1182 1182  * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1183 1183  
1224 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1184 1184  
1185 -= 4. Battery & Power Consumption =
1226 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1186 1186  
1228 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1229 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1230 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1231 +0,0,0(default)
1187 1187  
1188 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1233 +OK
1234 +)))
1235 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1236 +OK
1237 +
1238 +)))
1239 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1240 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1189 1189  
1242 +
1243 +)))|(% style="width:137px" %)(((
1244 +OK
1245 +)))
1246 +
1247 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1248 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1249 +|(% colspan="1" rowspan="3" style="width:155px" %)(((
1250 +AT+PWMOUT=a,b,c
1251 +
1252 +
1253 +)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1254 +Set PWM output time, output frequency and output duty cycle.
1255 +
1256 +(((
1257 +
1258 +)))
1259 +
1260 +(((
1261 +
1262 +)))
1263 +)))|(% style="width:242px" %)(((
1264 +a: Output time (unit: seconds)
1265 +
1266 +The value ranges from 0 to 65535.
1267 +
1268 +When a=65535, PWM will always output.
1269 +)))
1270 +|(% style="width:242px" %)(((
1271 +b: Output frequency (unit: HZ)
1272 +)))
1273 +|(% style="width:242px" %)(((
1274 +c: Output duty cycle (unit: %)
1275 +
1276 +The value ranges from 0 to 100.
1277 +)))
1278 +
1279 +(% style="color:blue" %)**Downlink Command: 0x0B01**
1280 +
1281 +Format: Command Code (0x0B01) followed by 6 bytes.
1282 +
1283 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1284 +
1285 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1286 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1287 +
1288 += 4. Battery & Power Cons =
1289 +
1290 +
1291 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1292 +
1190 1190  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1191 1191  
1192 1192  
... ... @@ -1194,7 +1194,7 @@
1194 1194  
1195 1195  
1196 1196  (% class="wikigeneratedid" %)
1197 -**User can change firmware SN50v3-LB to:**
1300 +**User can change firmware SN50v3-LB/LS to:**
1198 1198  
1199 1199  * Change Frequency band/ region.
1200 1200  * Update with new features.
... ... @@ -1207,26 +1207,24 @@
1207 1207  * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1208 1208  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1209 1209  
1210 -
1211 1211  = 6. FAQ =
1212 1212  
1213 -== 6.1 Where can i find source code of SN50v3-LB? ==
1315 +== 6.1 Where can i find source code of SN50v3-LB/LS? ==
1214 1214  
1215 1215  
1216 1216  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1217 1217  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1218 1218  
1321 +== 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
1219 1219  
1220 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1221 1221  
1222 -
1223 1223  See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1224 1224  
1225 1225  
1226 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1327 +== 6.3 How to put several sensors to a SN50v3-LB/LS? ==
1227 1227  
1228 1228  
1229 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1330 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1230 1230  
1231 1231  [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1232 1232  
... ... @@ -1236,7 +1236,7 @@
1236 1236  = 7. Order Info =
1237 1237  
1238 1238  
1239 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1340 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1240 1240  
1241 1241  (% style="color:red" %)**XX**(%%): The default frequency band
1242 1242  
... ... @@ -1256,13 +1256,12 @@
1256 1256  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1257 1257  * (% style="color:red" %)**NH**(%%): No Hole
1258 1258  
1259 -
1260 1260  = 8. ​Packing Info =
1261 1261  
1262 1262  
1263 1263  (% style="color:#037691" %)**Package Includes**:
1264 1264  
1265 -* SN50v3-LB LoRaWAN Generic Node
1365 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1266 1266  
1267 1267  (% style="color:#037691" %)**Dimension and weight**:
1268 1268  
... ... @@ -1271,7 +1271,6 @@
1271 1271  * Package Size / pcs : cm
1272 1272  * Weight / pcs : g
1273 1273  
1274 -
1275 1275  = 9. Support =
1276 1276  
1277 1277  
image-20231213102404-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +230.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0