Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Saxer - Content
-
... ... @@ -19,7 +19,7 @@ 19 19 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, and so on. 22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 ... ... @@ -27,6 +27,7 @@ 27 27 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 + 30 30 == 1.2 Features == 31 31 32 32 ... ... @@ -583,15 +583,11 @@ 583 583 584 584 ==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 585 585 586 - 587 587 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 588 588 589 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 590 590 591 - 592 592 ===== 2.3.2.10.a Uplink, PWM input capture ===== 593 593 594 - 595 595 [[image:image-20230817172209-2.png||height="439" width="683"]] 596 596 597 597 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) ... ... @@ -613,28 +613,15 @@ 613 613 [[image:image-20230817170702-1.png||height="161" width="1044"]] 614 614 615 615 616 - Whenthe device detectshefollowingPWMsignal,decoder willconverts thepulseperiod andhigh-leveldurationto frequencyandduty cycle.613 +(% style="color:blue" %)**AT+PWMSET=AA(Default is 0) ==> Corresponding downlink: 0B AA** 617 617 618 - **Frequency:**615 +When AA is 0, the unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. 619 619 620 -(% class="MsoNormal" %) 621 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 617 +When AA is 1, the unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. 622 622 623 -(% class="MsoNormal" %) 624 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 625 625 626 - 627 -(% class="MsoNormal" %) 628 -**Duty cycle:** 629 - 630 -Duty cycle= Duration of high level/ Pulse period*100 ~(%). 631 - 632 -[[image:image-20230818092200-1.png||height="344" width="627"]] 633 - 634 - 635 635 ===== 2.3.2.10.b Downlink, PWM output ===== 636 636 637 - 638 638 [[image:image-20230817173800-3.png||height="412" width="685"]] 639 639 640 640 Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** ... ... @@ -879,25 +879,6 @@ 879 879 ==== 2.3.3.12 PWM MOD ==== 880 880 881 881 882 -* ((( 883 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 884 -))) 885 -* ((( 886 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 887 -))) 888 - 889 - [[image:image-20230817183249-3.png||height="320" width="417"]] 890 - 891 -* ((( 892 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 893 -))) 894 -* ((( 895 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 896 - 897 - 898 - 899 -))) 900 - 901 901 ==== 2.3.3.13 Working MOD ==== 902 902 903 903 ... ... @@ -1154,34 +1154,6 @@ 1154 1154 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1155 1155 1156 1156 1157 -=== 3.3.8 PWM setting === 1158 - 1159 - 1160 -Feature: Set the time acquisition unit for PWM input capture. 1161 - 1162 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1163 - 1164 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1165 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1166 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1167 -0(default) 1168 - 1169 -OK 1170 -))) 1171 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)((( 1172 -OK 1173 - 1174 -))) 1175 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK 1176 - 1177 -(% style="color:blue" %)**Downlink Command: 0x0C** 1178 - 1179 -Format: Command Code (0x0C) followed by 1 bytes. 1180 - 1181 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1182 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1183 - 1184 - 1185 1185 = 4. Battery & Power Consumption = 1186 1186 1187 1187
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.9 KB - Content