<
From version < 74.6 >
edited by Xiaoling
on 2023/09/26 08:50
To version < 57.1 >
edited by Edwin Chen
on 2023/08/10 12:17
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -19,7 +19,7 @@
19 19  
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
... ... @@ -27,6 +27,7 @@
27 27  
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 +
30 30  == 1.2 ​Features ==
31 31  
32 32  
... ... @@ -469,6 +469,7 @@
469 469  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
470 470  
471 471  
473 +
472 472  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
473 473  
474 474  
... ... @@ -581,78 +581,6 @@
581 581  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
582 582  
583 583  
584 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
585 -
586 -
587 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
588 -
589 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
590 -
591 -
592 -===== 2.3.2.10.a  Uplink, PWM input capture =====
593 -
594 -
595 -[[image:image-20230817172209-2.png||height="439" width="683"]]
596 -
597 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
598 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
599 -|Value|Bat|(% style="width:191px" %)(((
600 -Temperature(DS18B20)(PC13)
601 -)))|(% style="width:78px" %)(((
602 -ADC(PA4)
603 -)))|(% style="width:135px" %)(((
604 -PWM_Setting
605 -
606 -&Digital Interrupt(PA8)
607 -)))|(% style="width:70px" %)(((
608 -Pulse period
609 -)))|(% style="width:89px" %)(((
610 -Duration of high level
611 -)))
612 -
613 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
614 -
615 -
616 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
617 -
618 -**Frequency:**
619 -
620 -(% class="MsoNormal" %)
621 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
622 -
623 -(% class="MsoNormal" %)
624 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
625 -
626 -
627 -(% class="MsoNormal" %)
628 -**Duty cycle:**
629 -
630 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
631 -
632 -[[image:image-20230818092200-1.png||height="344" width="627"]]
633 -
634 -
635 -===== 2.3.2.10.b  Downlink, PWM output =====
636 -
637 -
638 -[[image:image-20230817173800-3.png||height="412" width="685"]]
639 -
640 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
641 -
642 - xx xx xx is the output frequency, the unit is HZ.
643 -
644 - yy is the duty cycle of the output, the unit is %.
645 -
646 - zz zz is the time delay of the output, the unit is ms.
647 -
648 -
649 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
650 -
651 -The oscilloscope displays as follows:
652 -
653 -[[image:image-20230817173858-5.png||height="694" width="921"]]
654 -
655 -
656 656  === 2.3.3  ​Decode payload ===
657 657  
658 658  
... ... @@ -726,10 +726,6 @@
726 726  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
727 727  
728 728  
729 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
730 -
731 -[[image:image-20230811113449-1.png||height="370" width="608"]]
732 -
733 733  ==== 2.3.3.5 Digital Interrupt ====
734 734  
735 735  
... ... @@ -876,31 +876,9 @@
876 876  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
877 877  
878 878  
879 -==== 2.3.3.12  PWM MOD ====
805 +==== 2.3.3.12  Working MOD ====
880 880  
881 881  
882 -* (((
883 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
884 -)))
885 -* (((
886 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
887 -)))
888 -
889 - [[image:image-20230817183249-3.png||height="320" width="417"]]
890 -
891 -* (((
892 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
893 -)))
894 -* (((
895 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
896 -
897 -
898 -
899 -)))
900 -
901 -==== 2.3.3.13  Working MOD ====
902 -
903 -
904 904  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
905 905  
906 906  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -916,7 +916,6 @@
916 916  * 6: MOD7
917 917  * 7: MOD8
918 918  * 8: MOD9
919 -* 9: MOD10
920 920  
921 921  
922 922  == 2.4 Payload Decoder file ==
... ... @@ -1154,34 +1154,6 @@
1154 1154  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1155 1155  
1156 1156  
1157 -=== 3.3.8 PWM setting ===
1158 -
1159 -
1160 -Feature: Set the time acquisition unit for PWM input capture.
1161 -
1162 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1163 -
1164 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1165 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1166 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1167 -0(default)
1168 -
1169 -OK
1170 -)))
1171 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1172 -OK
1173 -
1174 -)))
1175 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1176 -
1177 -(% style="color:blue" %)**Downlink Command: 0x0C**
1178 -
1179 -Format: Command Code (0x0C) followed by 1 bytes.
1180 -
1181 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1182 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1183 -
1184 -
1185 1185  = 4. Battery & Power Consumption =
1186 1186  
1187 1187  
... ... @@ -1225,7 +1225,6 @@
1225 1225  
1226 1226  == 6.3 How to put several sensors to a SN50v3-LB? ==
1227 1227  
1228 -
1229 1229  When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1230 1230  
1231 1231  [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0