Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 14 removed)
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Saxer - Content
-
... ... @@ -19,7 +19,7 @@ 19 19 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, and so on. 22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 ... ... @@ -27,6 +27,7 @@ 27 27 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 + 30 30 == 1.2 Features == 31 31 32 32 ... ... @@ -125,7 +125,7 @@ 125 125 == 1.7 Pin Definitions == 126 126 127 127 128 -[[image:image-2023061016 3213-1.png||height="404" width="699"]]129 +[[image:image-20230610162852-1.png||height="466" width="802"]] 129 129 130 130 131 131 == 1.8 Mechanical == ... ... @@ -229,33 +229,33 @@ 229 229 230 230 (% style="color:#037691" %)**Frequency Band**: 231 231 232 -0x01: EU868 233 +*0x01: EU868 233 233 234 -0x02: US915 235 +*0x02: US915 235 235 236 -0x03: IN865 237 +*0x03: IN865 237 237 238 -0x04: AU915 239 +*0x04: AU915 239 239 240 -0x05: KZ865 241 +*0x05: KZ865 241 241 242 -0x06: RU864 243 +*0x06: RU864 243 243 244 -0x07: AS923 245 +*0x07: AS923 245 245 246 -0x08: AS923-1 247 +*0x08: AS923-1 247 247 248 -0x09: AS923-2 249 +*0x09: AS923-2 249 249 250 -0x0a: AS923-3 251 +*0x0a: AS923-3 251 251 252 -0x0b: CN470 253 +*0x0b: CN470 253 253 254 -0x0c: EU433 255 +*0x0c: EU433 255 255 256 -0x0d: KR920 257 +*0x0d: KR920 257 257 258 -0x0e: MA869 259 +*0x0e: MA869 259 259 260 260 261 261 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -331,8 +331,9 @@ 331 331 )))|(% style="width:189px" %)((( 332 332 Digital in(PB15) & Digital Interrupt(PA8) 333 333 )))|(% style="width:208px" %)((( 334 -Distance measure by: 1) LIDAR-Lite V3HP 335 -Or 2) Ultrasonic Sensor 335 +Distance measure by:1) LIDAR-Lite V3HP 336 +Or 337 +2) Ultrasonic Sensor 336 336 )))|(% style="width:117px" %)Reserved 337 337 338 338 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] ... ... @@ -362,7 +362,8 @@ 362 362 ADC(PA4) 363 363 )))|(% style="width:323px" %)((( 364 364 Distance measure by:1)TF-Mini plus LiDAR 365 -Or 2) TF-Luna LiDAR 367 +Or 368 +2) TF-Luna LiDAR 366 366 )))|(% style="width:188px" %)Distance signal strength 367 367 368 368 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] ... ... @@ -379,7 +379,7 @@ 379 379 380 380 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 381 381 382 -[[image:image-20230 610170047-1.png||height="452" width="799"]]385 +[[image:image-20230513105207-4.png||height="469" width="802"]] 383 383 384 384 385 385 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== ... ... @@ -469,6 +469,7 @@ 469 469 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 470 470 471 471 475 + 472 472 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 473 473 474 474 ... ... @@ -581,78 +581,6 @@ 581 581 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 582 582 583 583 584 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 585 - 586 - 587 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 588 - 589 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 590 - 591 - 592 -===== 2.3.2.10.a Uplink, PWM input capture ===== 593 - 594 - 595 -[[image:image-20230817172209-2.png||height="439" width="683"]] 596 - 597 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 598 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 599 -|Value|Bat|(% style="width:191px" %)((( 600 -Temperature(DS18B20)(PC13) 601 -)))|(% style="width:78px" %)((( 602 -ADC(PA4) 603 -)))|(% style="width:135px" %)((( 604 -PWM_Setting 605 - 606 -&Digital Interrupt(PA8) 607 -)))|(% style="width:70px" %)((( 608 -Pulse period 609 -)))|(% style="width:89px" %)((( 610 -Duration of high level 611 -))) 612 - 613 -[[image:image-20230817170702-1.png||height="161" width="1044"]] 614 - 615 - 616 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 617 - 618 -**Frequency:** 619 - 620 -(% class="MsoNormal" %) 621 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 622 - 623 -(% class="MsoNormal" %) 624 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 625 - 626 - 627 -(% class="MsoNormal" %) 628 -**Duty cycle:** 629 - 630 -Duty cycle= Duration of high level/ Pulse period*100 ~(%). 631 - 632 -[[image:image-20230818092200-1.png||height="344" width="627"]] 633 - 634 - 635 -===== 2.3.2.10.b Downlink, PWM output ===== 636 - 637 - 638 -[[image:image-20230817173800-3.png||height="412" width="685"]] 639 - 640 -Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 641 - 642 - xx xx xx is the output frequency, the unit is HZ. 643 - 644 - yy is the duty cycle of the output, the unit is %. 645 - 646 - zz zz is the time delay of the output, the unit is ms. 647 - 648 - 649 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 650 - 651 -The oscilloscope displays as follows: 652 - 653 -[[image:image-20230817173858-5.png||height="694" width="921"]] 654 - 655 - 656 656 === 2.3.3 Decode payload === 657 657 658 658 ... ... @@ -716,9 +716,9 @@ 716 716 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 717 717 718 718 719 -The measuring range of the ADC is only about 0 .1V to 1.1V The voltage resolution is about 0.24mv.651 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 720 720 721 -When the measured output voltage of the sensor is not within the range of 0 .1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.653 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 722 722 723 723 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 724 724 ... ... @@ -726,10 +726,6 @@ 726 726 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 727 727 728 728 729 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 730 - 731 -[[image:image-20230811113449-1.png||height="370" width="608"]] 732 - 733 733 ==== 2.3.3.5 Digital Interrupt ==== 734 734 735 735 ... ... @@ -798,7 +798,7 @@ 798 798 799 799 Below is the connection to SHT20/ SHT31. The connection is as below: 800 800 801 -[[image:image-20230 610170152-2.png||height="501" width="846"]]729 +[[image:image-20230513103633-3.png||height="448" width="716"]] 802 802 803 803 804 804 The device will be able to get the I2C sensor data now and upload to IoT Server. ... ... @@ -876,31 +876,9 @@ 876 876 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 877 877 878 878 879 -==== 2.3.3.12 PWMMOD ====807 +==== 2.3.3.12 Working MOD ==== 880 880 881 881 882 -* ((( 883 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 884 -))) 885 -* ((( 886 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 887 -))) 888 - 889 - [[image:image-20230817183249-3.png||height="320" width="417"]] 890 - 891 -* ((( 892 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 893 -))) 894 -* ((( 895 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 896 - 897 - 898 - 899 -))) 900 - 901 -==== 2.3.3.13 Working MOD ==== 902 - 903 - 904 904 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 905 905 906 906 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -916,7 +916,6 @@ 916 916 * 6: MOD7 917 917 * 7: MOD8 918 918 * 8: MOD9 919 -* 9: MOD10 920 920 921 921 922 922 == 2.4 Payload Decoder file == ... ... @@ -976,7 +976,7 @@ 976 976 (% style="color:blue" %)**AT Command: AT+TDC** 977 977 978 978 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 979 -|=(% style="width: 156px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**884 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 980 980 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 981 981 30000 982 982 OK ... ... @@ -1015,7 +1015,7 @@ 1015 1015 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 1016 1016 1017 1017 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1018 -|=(% style="width: 155px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**923 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1019 1019 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1020 1020 0 1021 1021 OK ... ... @@ -1060,7 +1060,7 @@ 1060 1060 (% style="color:blue" %)**AT Command: AT+5VT** 1061 1061 1062 1062 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1063 -|=(% style="width: 155px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**968 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1064 1064 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1065 1065 500(default) 1066 1066 OK ... ... @@ -1087,7 +1087,7 @@ 1087 1087 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1088 1088 1089 1089 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1090 -|=(% style="width: 155px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**995 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1091 1091 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1092 1092 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1093 1093 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -1115,7 +1115,7 @@ 1115 1115 (% style="color:blue" %)**AT Command: AT+SETCNT** 1116 1116 1117 1117 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1118 -|=(% style="width: 155px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1023 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1119 1119 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1120 1120 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1121 1121 ... ... @@ -1137,7 +1137,7 @@ 1137 1137 (% style="color:blue" %)**AT Command: AT+MOD** 1138 1138 1139 1139 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1140 -|=(% style="width: 155px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1045 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1141 1141 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1142 1142 OK 1143 1143 ))) ... ... @@ -1154,34 +1154,6 @@ 1154 1154 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1155 1155 1156 1156 1157 -=== 3.3.8 PWM setting === 1158 - 1159 - 1160 -Feature: Set the time acquisition unit for PWM input capture. 1161 - 1162 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1163 - 1164 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1165 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1166 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1167 -0(default) 1168 - 1169 -OK 1170 -))) 1171 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)((( 1172 -OK 1173 - 1174 -))) 1175 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK 1176 - 1177 -(% style="color:blue" %)**Downlink Command: 0x0C** 1178 - 1179 -Format: Command Code (0x0C) followed by 1 bytes. 1180 - 1181 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1182 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1183 - 1184 - 1185 1185 = 4. Battery & Power Consumption = 1186 1186 1187 1187 ... ... @@ -1200,12 +1200,12 @@ 1200 1200 * Update with new features. 1201 1201 * Fix bugs. 1202 1202 1203 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/ 4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**1080 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1204 1204 1205 1205 **Methods to Update Firmware:** 1206 1206 1207 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**1208 -* Update through UART TTL interface :**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.1084 +* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1085 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1209 1209 1210 1210 1211 1211 = 6. FAQ = ... ... @@ -1217,22 +1217,6 @@ 1217 1217 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1218 1218 1219 1219 1220 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1221 - 1222 - 1223 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1224 - 1225 - 1226 -== 6.3 How to put several sensors to a SN50v3-LB? == 1227 - 1228 - 1229 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1230 - 1231 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1232 - 1233 -[[image:image-20230810121434-1.png||height="242" width="656"]] 1234 - 1235 - 1236 1236 = 7. Order Info = 1237 1237 1238 1238
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.9 KB - Content