<
From version < 74.6 >
edited by Xiaoling
on 2023/09/26 08:50
To version < 43.59 >
edited by Xiaoling
on 2023/05/16 17:06
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -19,7 +19,7 @@
19 19  
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
... ... @@ -27,6 +27,7 @@
27 27  
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 +
30 30  == 1.2 ​Features ==
31 31  
32 32  
... ... @@ -41,6 +41,7 @@
41 41  * 8500mAh Battery for long term use
42 42  
43 43  
45 +
44 44  == 1.3 Specification ==
45 45  
46 46  
... ... @@ -79,6 +79,7 @@
79 79  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
80 80  
81 81  
84 +
82 82  == 1.4 Sleep mode and working mode ==
83 83  
84 84  
... ... @@ -107,6 +107,7 @@
107 107  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
108 108  
109 109  
113 +
110 110  == 1.6 BLE connection ==
111 111  
112 112  
... ... @@ -125,7 +125,7 @@
125 125  == 1.7 Pin Definitions ==
126 126  
127 127  
128 -[[image:image-20230610163213-1.png||height="404" width="699"]]
132 +[[image:image-20230513102034-2.png]]
129 129  
130 130  
131 131  == 1.8 Mechanical ==
... ... @@ -138,7 +138,7 @@
138 138  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
139 139  
140 140  
141 -== 1.9 Hole Option ==
145 +== Hole Option ==
142 142  
143 143  
144 144  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
... ... @@ -153,7 +153,7 @@
153 153  == 2.1 How it works ==
154 154  
155 155  
156 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
160 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
157 157  
158 158  
159 159  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -161,7 +161,7 @@
161 161  
162 162  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
163 163  
164 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
168 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
165 165  
166 166  
167 167  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -210,7 +210,7 @@
210 210  === 2.3.1 Device Status, FPORT~=5 ===
211 211  
212 212  
213 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
217 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
214 214  
215 215  The Payload format is as below.
216 216  
... ... @@ -218,44 +218,44 @@
218 218  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
219 219  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
220 220  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
221 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
225 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
222 222  
223 223  Example parse in TTNv3
224 224  
225 225  
226 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
230 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
227 227  
228 228  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
229 229  
230 230  (% style="color:#037691" %)**Frequency Band**:
231 231  
232 -0x01: EU868
236 +*0x01: EU868
233 233  
234 -0x02: US915
238 +*0x02: US915
235 235  
236 -0x03: IN865
240 +*0x03: IN865
237 237  
238 -0x04: AU915
242 +*0x04: AU915
239 239  
240 -0x05: KZ865
244 +*0x05: KZ865
241 241  
242 -0x06: RU864
246 +*0x06: RU864
243 243  
244 -0x07: AS923
248 +*0x07: AS923
245 245  
246 -0x08: AS923-1
250 +*0x08: AS923-1
247 247  
248 -0x09: AS923-2
252 +*0x09: AS923-2
249 249  
250 -0x0a: AS923-3
254 +*0x0a: AS923-3
251 251  
252 -0x0b: CN470
256 +*0x0b: CN470
253 253  
254 -0x0c: EU433
258 +*0x0c: EU433
255 255  
256 -0x0d: KR920
260 +*0x0d: KR920
257 257  
258 -0x0e: MA869
262 +*0x0e: MA869
259 259  
260 260  
261 261  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -279,22 +279,21 @@
279 279  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
280 280  
281 281  
282 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
286 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
283 283  
284 284  For example:
285 285  
286 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
290 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
287 287  
288 288  
289 289  (% style="color:red" %) **Important Notice:**
290 290  
291 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
295 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
296 +1. All modes share the same Payload Explanation from HERE.
297 +1. By default, the device will send an uplink message every 20 minutes.
292 292  
293 -2. All modes share the same Payload Explanation from HERE.
294 294  
295 -3. By default, the device will send an uplink message every 20 minutes.
296 296  
297 -
298 298  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
299 299  
300 300  
... ... @@ -302,7 +302,7 @@
302 302  
303 303  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
304 304  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
305 -|Value|Bat|(% style="width:191px" %)(((
308 +|**Value**|Bat|(% style="width:191px" %)(((
306 306  Temperature(DS18B20)(PC13)
307 307  )))|(% style="width:78px" %)(((
308 308  ADC(PA4)
... ... @@ -317,6 +317,7 @@
317 317  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
318 318  
319 319  
323 +
320 320  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
321 321  
322 322  
... ... @@ -324,7 +324,7 @@
324 324  
325 325  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
326 326  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
327 -|Value|BAT|(% style="width:196px" %)(((
331 +|**Value**|BAT|(% style="width:196px" %)(((
328 328  Temperature(DS18B20)(PC13)
329 329  )))|(% style="width:87px" %)(((
330 330  ADC(PA4)
... ... @@ -331,8 +331,9 @@
331 331  )))|(% style="width:189px" %)(((
332 332  Digital in(PB15) & Digital Interrupt(PA8)
333 333  )))|(% style="width:208px" %)(((
334 -Distance measure by: 1) LIDAR-Lite V3HP
335 -Or 2) Ultrasonic Sensor
338 +Distance measure by:1) LIDAR-Lite V3HP
339 +Or
340 +2) Ultrasonic Sensor
336 336  )))|(% style="width:117px" %)Reserved
337 337  
338 338  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
... ... @@ -345,7 +345,7 @@
345 345  
346 346  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
347 347  
348 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
353 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
349 349  
350 350  [[image:image-20230512173903-6.png||height="596" width="715"]]
351 351  
... ... @@ -354,7 +354,7 @@
354 354  
355 355  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
356 356  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
357 -|Value|BAT|(% style="width:183px" %)(((
362 +|**Value**|BAT|(% style="width:183px" %)(((
358 358  Temperature(DS18B20)(PC13)
359 359  )))|(% style="width:173px" %)(((
360 360  Digital in(PB15) & Digital Interrupt(PA8)
... ... @@ -362,7 +362,8 @@
362 362  ADC(PA4)
363 363  )))|(% style="width:323px" %)(((
364 364  Distance measure by:1)TF-Mini plus LiDAR
365 -Or 2) TF-Luna LiDAR
370 +Or 
371 +2) TF-Luna LiDAR
366 366  )))|(% style="width:188px" %)Distance signal  strength
367 367  
368 368  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
... ... @@ -370,7 +370,7 @@
370 370  
371 371  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
372 372  
373 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
379 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
374 374  
375 375  [[image:image-20230512180609-7.png||height="555" width="802"]]
376 376  
... ... @@ -377,9 +377,9 @@
377 377  
378 378  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
379 379  
380 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
386 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
381 381  
382 -[[image:image-20230610170047-1.png||height="452" width="799"]]
388 +[[image:image-20230513105207-4.png||height="469" width="802"]]
383 383  
384 384  
385 385  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
... ... @@ -391,7 +391,7 @@
391 391  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
392 392  **Size(bytes)**
393 393  )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
394 -|Value|(% style="width:68px" %)(((
400 +|**Value**|(% style="width:68px" %)(((
395 395  ADC1(PA4)
396 396  )))|(% style="width:75px" %)(((
397 397  ADC2(PA5)
... ... @@ -415,7 +415,7 @@
415 415  
416 416  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
417 417  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
418 -|Value|BAT|(% style="width:186px" %)(((
424 +|**Value**|BAT|(% style="width:186px" %)(((
419 419  Temperature1(DS18B20)(PC13)
420 420  )))|(% style="width:82px" %)(((
421 421  ADC(PA4)
... ... @@ -426,10 +426,10 @@
426 426  
427 427  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
428 428  
429 -
430 430  [[image:image-20230513134006-1.png||height="559" width="736"]]
431 431  
432 432  
438 +
433 433  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
434 434  
435 435  
... ... @@ -437,8 +437,8 @@
437 437  
438 438  Each HX711 need to be calibrated before used. User need to do below two steps:
439 439  
440 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
441 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
446 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
447 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
442 442  1. (((
443 443  Weight has 4 bytes, the unit is g.
444 444  
... ... @@ -448,7 +448,7 @@
448 448  
449 449  For example:
450 450  
451 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
457 +**AT+GETSENSORVALUE =0**
452 452  
453 453  Response:  Weight is 401 g
454 454  
... ... @@ -458,7 +458,7 @@
458 458  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
459 459  **Size(bytes)**
460 460  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
461 -|Value|BAT|(% style="width:193px" %)(((
467 +|**Value**|BAT|(% style="width:193px" %)(((
462 462  Temperature(DS18B20)(PC13)
463 463  )))|(% style="width:85px" %)(((
464 464  ADC(PA4)
... ... @@ -469,6 +469,7 @@
469 469  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
470 470  
471 471  
478 +
472 472  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
473 473  
474 474  
... ... @@ -483,7 +483,7 @@
483 483  
484 484  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
485 485  |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
486 -|Value|BAT|(% style="width:256px" %)(((
493 +|**Value**|BAT|(% style="width:256px" %)(((
487 487  Temperature(DS18B20)(PC13)
488 488  )))|(% style="width:108px" %)(((
489 489  ADC(PA4)
... ... @@ -496,6 +496,7 @@
496 496  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
497 497  
498 498  
506 +
499 499  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
500 500  
501 501  
... ... @@ -503,7 +503,7 @@
503 503  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
504 504  **Size(bytes)**
505 505  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
506 -|Value|BAT|(% style="width:188px" %)(((
514 +|**Value**|BAT|(% style="width:188px" %)(((
507 507  Temperature(DS18B20)
508 508  (PC13)
509 509  )))|(% style="width:83px" %)(((
... ... @@ -522,7 +522,7 @@
522 522  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
523 523  **Size(bytes)**
524 524  )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
525 -|Value|BAT|(% style="width:207px" %)(((
533 +|**Value**|BAT|(% style="width:207px" %)(((
526 526  Temperature(DS18B20)
527 527  (PC13)
528 528  )))|(% style="width:94px" %)(((
... ... @@ -545,7 +545,7 @@
545 545  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
546 546  **Size(bytes)**
547 547  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
548 -|Value|BAT|(((
556 +|**Value**|BAT|(((
549 549  Temperature
550 550  (DS18B20)(PC13)
551 551  )))|(((
... ... @@ -581,78 +581,6 @@
581 581  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
582 582  
583 583  
584 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
585 -
586 -
587 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
588 -
589 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
590 -
591 -
592 -===== 2.3.2.10.a  Uplink, PWM input capture =====
593 -
594 -
595 -[[image:image-20230817172209-2.png||height="439" width="683"]]
596 -
597 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
598 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
599 -|Value|Bat|(% style="width:191px" %)(((
600 -Temperature(DS18B20)(PC13)
601 -)))|(% style="width:78px" %)(((
602 -ADC(PA4)
603 -)))|(% style="width:135px" %)(((
604 -PWM_Setting
605 -
606 -&Digital Interrupt(PA8)
607 -)))|(% style="width:70px" %)(((
608 -Pulse period
609 -)))|(% style="width:89px" %)(((
610 -Duration of high level
611 -)))
612 -
613 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
614 -
615 -
616 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
617 -
618 -**Frequency:**
619 -
620 -(% class="MsoNormal" %)
621 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
622 -
623 -(% class="MsoNormal" %)
624 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
625 -
626 -
627 -(% class="MsoNormal" %)
628 -**Duty cycle:**
629 -
630 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
631 -
632 -[[image:image-20230818092200-1.png||height="344" width="627"]]
633 -
634 -
635 -===== 2.3.2.10.b  Downlink, PWM output =====
636 -
637 -
638 -[[image:image-20230817173800-3.png||height="412" width="685"]]
639 -
640 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
641 -
642 - xx xx xx is the output frequency, the unit is HZ.
643 -
644 - yy is the duty cycle of the output, the unit is %.
645 -
646 - zz zz is the time delay of the output, the unit is ms.
647 -
648 -
649 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
650 -
651 -The oscilloscope displays as follows:
652 -
653 -[[image:image-20230817173858-5.png||height="694" width="921"]]
654 -
655 -
656 656  === 2.3.3  ​Decode payload ===
657 657  
658 658  
... ... @@ -662,13 +662,13 @@
662 662  
663 663  The payload decoder function for TTN V3 are here:
664 664  
665 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
601 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
666 666  
667 667  
668 668  ==== 2.3.3.1 Battery Info ====
669 669  
670 670  
671 -Check the battery voltage for SN50v3-LB.
607 +Check the battery voltage for SN50v3.
672 672  
673 673  Ex1: 0x0B45 = 2885mV
674 674  
... ... @@ -716,24 +716,19 @@
716 716  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
717 717  
718 718  
719 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
655 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
720 720  
721 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
657 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
722 722  
723 723  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
724 724  
725 -
726 726  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
727 727  
728 728  
729 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
730 -
731 -[[image:image-20230811113449-1.png||height="370" width="608"]]
732 -
733 733  ==== 2.3.3.5 Digital Interrupt ====
734 734  
735 735  
736 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
667 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
737 737  
738 738  (% style="color:blue" %)** Interrupt connection method:**
739 739  
... ... @@ -746,18 +746,18 @@
746 746  
747 747  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
748 748  
749 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
680 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
750 750  
751 751  
752 752  (% style="color:blue" %)**Below is the installation example:**
753 753  
754 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
685 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
755 755  
756 756  * (((
757 -One pin to SN50v3-LB's PA8 pin
688 +One pin to SN50_v3's PA8 pin
758 758  )))
759 759  * (((
760 -The other pin to SN50v3-LB's VDD pin
691 +The other pin to SN50_v3's VDD pin
761 761  )))
762 762  
763 763  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -774,7 +774,7 @@
774 774  
775 775  The command is:
776 776  
777 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
708 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
778 778  
779 779  Below shows some screen captures in TTN V3:
780 780  
... ... @@ -781,7 +781,7 @@
781 781  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
782 782  
783 783  
784 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
715 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
785 785  
786 786  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
787 787  
... ... @@ -793,13 +793,12 @@
793 793  
794 794  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
795 795  
796 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
727 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
797 797  
798 -
799 799  Below is the connection to SHT20/ SHT31. The connection is as below:
800 800  
801 -[[image:image-20230610170152-2.png||height="501" width="846"]]
802 802  
732 +[[image:image-20230513103633-3.png||height="448" width="716"]]
803 803  
804 804  The device will be able to get the I2C sensor data now and upload to IoT Server.
805 805  
... ... @@ -827,7 +827,7 @@
827 827  
828 828  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
829 829  
830 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
760 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
831 831  
832 832  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
833 833  
... ... @@ -836,7 +836,7 @@
836 836  [[image:image-20230512173903-6.png||height="596" width="715"]]
837 837  
838 838  
839 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
769 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
840 840  
841 841  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
842 842  
... ... @@ -848,13 +848,13 @@
848 848  ==== 2.3.3.9  Battery Output - BAT pin ====
849 849  
850 850  
851 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
781 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
852 852  
853 853  
854 854  ==== 2.3.3.10  +5V Output ====
855 855  
856 856  
857 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
787 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
858 858  
859 859  The 5V output time can be controlled by AT Command.
860 860  
... ... @@ -862,7 +862,7 @@
862 862  
863 863  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
864 864  
865 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
795 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
866 866  
867 867  
868 868  ==== 2.3.3.11  BH1750 Illumination Sensor ====
... ... @@ -876,31 +876,9 @@
876 876  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
877 877  
878 878  
879 -==== 2.3.3.12  PWM MOD ====
809 +==== 2.3.3.12  Working MOD ====
880 880  
881 881  
882 -* (((
883 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
884 -)))
885 -* (((
886 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
887 -)))
888 -
889 - [[image:image-20230817183249-3.png||height="320" width="417"]]
890 -
891 -* (((
892 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
893 -)))
894 -* (((
895 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
896 -
897 -
898 -
899 -)))
900 -
901 -==== 2.3.3.13  Working MOD ====
902 -
903 -
904 904  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
905 905  
906 906  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -916,9 +916,9 @@
916 916  * 6: MOD7
917 917  * 7: MOD8
918 918  * 8: MOD9
919 -* 9: MOD10
920 920  
921 921  
829 +
922 922  == 2.4 Payload Decoder file ==
923 923  
924 924  
... ... @@ -949,6 +949,7 @@
949 949  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
950 950  
951 951  
860 +
952 952  == 3.2 General Commands ==
953 953  
954 954  
... ... @@ -965,7 +965,7 @@
965 965  == 3.3 Commands special design for SN50v3-LB ==
966 966  
967 967  
968 -These commands only valid for SN50v3-LB, as below:
877 +These commands only valid for S31x-LB, as below:
969 969  
970 970  
971 971  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -976,7 +976,7 @@
976 976  (% style="color:blue" %)**AT Command: AT+TDC**
977 977  
978 978  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
979 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
888 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
980 980  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
981 981  30000
982 982  OK
... ... @@ -997,14 +997,15 @@
997 997  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
998 998  
999 999  
909 +
1000 1000  === 3.3.2 Get Device Status ===
1001 1001  
1002 1002  
1003 1003  Send a LoRaWAN downlink to ask the device to send its status.
1004 1004  
1005 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
915 +(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
1006 1006  
1007 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
917 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
1008 1008  
1009 1009  
1010 1010  === 3.3.3 Set Interrupt Mode ===
... ... @@ -1015,7 +1015,7 @@
1015 1015  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1016 1016  
1017 1017  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1018 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
928 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1019 1019  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1020 1020  0
1021 1021  OK
... ... @@ -1046,6 +1046,7 @@
1046 1046  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1047 1047  
1048 1048  
959 +
1049 1049  === 3.3.4 Set Power Output Duration ===
1050 1050  
1051 1051  
... ... @@ -1060,7 +1060,7 @@
1060 1060  (% style="color:blue" %)**AT Command: AT+5VT**
1061 1061  
1062 1062  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1063 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
974 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1064 1064  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1065 1065  500(default)
1066 1066  OK
... ... @@ -1079,6 +1079,7 @@
1079 1079  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1080 1080  
1081 1081  
993 +
1082 1082  === 3.3.5 Set Weighing parameters ===
1083 1083  
1084 1084  
... ... @@ -1087,7 +1087,7 @@
1087 1087  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1088 1088  
1089 1089  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1090 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1002 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1091 1091  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1092 1092  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1093 1093  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -1105,6 +1105,7 @@
1105 1105  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1106 1106  
1107 1107  
1020 +
1108 1108  === 3.3.6 Set Digital pulse count value ===
1109 1109  
1110 1110  
... ... @@ -1115,7 +1115,7 @@
1115 1115  (% style="color:blue" %)**AT Command: AT+SETCNT**
1116 1116  
1117 1117  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1118 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1031 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1119 1119  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1120 1120  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1121 1121  
... ... @@ -1129,6 +1129,7 @@
1129 1129  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1130 1130  
1131 1131  
1045 +
1132 1132  === 3.3.7 Set Workmode ===
1133 1133  
1134 1134  
... ... @@ -1137,7 +1137,7 @@
1137 1137  (% style="color:blue" %)**AT Command: AT+MOD**
1138 1138  
1139 1139  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1140 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1054 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1141 1141  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1142 1142  OK
1143 1143  )))
... ... @@ -1154,34 +1154,7 @@
1154 1154  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1155 1155  
1156 1156  
1157 -=== 3.3.8 PWM setting ===
1158 1158  
1159 -
1160 -Feature: Set the time acquisition unit for PWM input capture.
1161 -
1162 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1163 -
1164 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1165 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1166 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1167 -0(default)
1168 -
1169 -OK
1170 -)))
1171 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1172 -OK
1173 -
1174 -)))
1175 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1176 -
1177 -(% style="color:blue" %)**Downlink Command: 0x0C**
1178 -
1179 -Format: Command Code (0x0C) followed by 1 bytes.
1180 -
1181 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1182 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1183 -
1184 -
1185 1185  = 4. Battery & Power Consumption =
1186 1186  
1187 1187  
... ... @@ -1194,20 +1194,22 @@
1194 1194  
1195 1195  
1196 1196  (% class="wikigeneratedid" %)
1197 -**User can change firmware SN50v3-LB to:**
1084 +User can change firmware SN50v3-LB to:
1198 1198  
1199 1199  * Change Frequency band/ region.
1200 1200  * Update with new features.
1201 1201  * Fix bugs.
1202 1202  
1203 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1090 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1204 1204  
1205 -**Methods to Update Firmware:**
1206 1206  
1207 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1208 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1093 +Methods to Update Firmware:
1209 1209  
1095 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1096 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1210 1210  
1098 +
1099 +
1211 1211  = 6. FAQ =
1212 1212  
1213 1213  == 6.1 Where can i find source code of SN50v3-LB? ==
... ... @@ -1217,22 +1217,7 @@
1217 1217  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1218 1218  
1219 1219  
1220 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1221 1221  
1222 -
1223 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1224 -
1225 -
1226 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1227 -
1228 -
1229 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1230 -
1231 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1232 -
1233 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1234 -
1235 -
1236 1236  = 7. Order Info =
1237 1237  
1238 1238  
... ... @@ -1257,6 +1257,7 @@
1257 1257  * (% style="color:red" %)**NH**(%%): No Hole
1258 1258  
1259 1259  
1134 +
1260 1260  = 8. ​Packing Info =
1261 1261  
1262 1262  
... ... @@ -1272,6 +1272,7 @@
1272 1272  * Weight / pcs : g
1273 1273  
1274 1274  
1150 +
1275 1275  = 9. Support =
1276 1276  
1277 1277  
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0