<
From version < 74.6 >
edited by Xiaoling
on 2023/09/26 08:50
To version < 34.1 >
edited by Saxer Lin
on 2023/05/13 11:12
>
Change comment: Uploaded new attachment "image-20230513111231-8.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Saxer
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
3 3  
4 4  
5 5  
... ... @@ -16,20 +16,23 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, and so on.
23 23  
21 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
22 +
23 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
29 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
32 +
30 30  == 1.2 ​Features ==
31 31  
32 -
33 33  * LoRaWAN 1.0.3 Class A
34 34  * Ultra-low power consumption
35 35  * Open-Source hardware/software
... ... @@ -40,10 +40,8 @@
40 40  * Downlink to change configure
41 41  * 8500mAh Battery for long term use
42 42  
43 -
44 44  == 1.3 Specification ==
45 45  
46 -
47 47  (% style="color:#037691" %)**Common DC Characteristics:**
48 48  
49 49  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -78,10 +78,8 @@
78 78  * Sleep Mode: 5uA @ 3.3v
79 79  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
80 80  
81 -
82 82  == 1.4 Sleep mode and working mode ==
83 83  
84 -
85 85  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
86 86  
87 87  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -106,7 +106,6 @@
106 106  )))
107 107  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
108 108  
109 -
110 110  == 1.6 BLE connection ==
111 111  
112 112  
... ... @@ -125,7 +125,7 @@
125 125  == 1.7 Pin Definitions ==
126 126  
127 127  
128 -[[image:image-20230610163213-1.png||height="404" width="699"]]
125 +[[image:image-20230511203450-2.png||height="443" width="785"]]
129 129  
130 130  
131 131  == 1.8 Mechanical ==
... ... @@ -138,9 +138,8 @@
138 138  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
139 139  
140 140  
141 -== 1.9 Hole Option ==
138 +== Hole Option ==
142 142  
143 -
144 144  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
145 145  
146 146  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -153,7 +153,7 @@
153 153  == 2.1 How it works ==
154 154  
155 155  
156 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
157 157  
158 158  
159 159  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -161,7 +161,7 @@
161 161  
162 162  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
163 163  
164 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
165 165  
166 166  
167 167  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -210,7 +210,7 @@
210 210  === 2.3.1 Device Status, FPORT~=5 ===
211 211  
212 212  
213 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
214 214  
215 215  The Payload format is as below.
216 216  
... ... @@ -218,44 +218,44 @@
218 218  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
219 219  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
220 220  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
221 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
222 222  
223 223  Example parse in TTNv3
224 224  
225 225  
226 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
227 227  
228 228  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
229 229  
230 230  (% style="color:#037691" %)**Frequency Band**:
231 231  
232 -0x01: EU868
228 +*0x01: EU868
233 233  
234 -0x02: US915
230 +*0x02: US915
235 235  
236 -0x03: IN865
232 +*0x03: IN865
237 237  
238 -0x04: AU915
234 +*0x04: AU915
239 239  
240 -0x05: KZ865
236 +*0x05: KZ865
241 241  
242 -0x06: RU864
238 +*0x06: RU864
243 243  
244 -0x07: AS923
240 +*0x07: AS923
245 245  
246 -0x08: AS923-1
242 +*0x08: AS923-1
247 247  
248 -0x09: AS923-2
244 +*0x09: AS923-2
249 249  
250 -0x0a: AS923-3
246 +*0x0a: AS923-3
251 251  
252 -0x0b: CN470
248 +*0x0b: CN470
253 253  
254 -0x0c: EU433
250 +*0x0c: EU433
255 255  
256 -0x0d: KR920
252 +*0x0d: KR920
257 257  
258 -0x0e: MA869
254 +*0x0e: MA869
259 259  
260 260  
261 261  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -279,199 +279,186 @@
279 279  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
280 280  
281 281  
282 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
283 283  
284 284  For example:
285 285  
286 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
282 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
287 287  
288 288  
289 289  (% style="color:red" %) **Important Notice:**
290 290  
291 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
288 +1. All modes share the same Payload Explanation from HERE.
289 +1. By default, the device will send an uplink message every 20 minutes.
292 292  
293 -2. All modes share the same Payload Explanation from HERE.
294 -
295 -3. By default, the device will send an uplink message every 20 minutes.
296 -
297 -
298 298  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
299 299  
300 -
301 301  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
302 302  
303 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
304 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
305 -|Value|Bat|(% style="width:191px" %)(((
306 -Temperature(DS18B20)(PC13)
307 -)))|(% style="width:78px" %)(((
308 -ADC(PA4)
295 +|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2**
296 +|**Value**|Bat|(((
297 +Temperature(DS18B20)
298 +
299 +(PC13)
300 +)))|(((
301 +ADC
302 +
303 +(PA4)
309 309  )))|(% style="width:216px" %)(((
310 -Digital in(PB15)&Digital Interrupt(PA8)
311 -)))|(% style="width:308px" %)(((
312 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
313 -)))|(% style="width:154px" %)(((
314 -Humidity(SHT20 or SHT31)
315 -)))
305 +Digital in & Digital Interrupt
316 316  
307 +
308 +)))|(% style="width:342px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|(% style="width:171px" %)Humidity(SHT20 or SHT31)
309 +
317 317  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
318 318  
319 319  
320 320  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
321 321  
322 -
323 323  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
324 324  
325 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
326 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
327 -|Value|BAT|(% style="width:196px" %)(((
328 -Temperature(DS18B20)(PC13)
329 -)))|(% style="width:87px" %)(((
330 -ADC(PA4)
331 -)))|(% style="width:189px" %)(((
332 -Digital in(PB15) & Digital Interrupt(PA8)
333 -)))|(% style="width:208px" %)(((
334 -Distance measure by: 1) LIDAR-Lite V3HP
335 -Or 2) Ultrasonic Sensor
336 -)))|(% style="width:117px" %)Reserved
317 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
318 +|**Value**|BAT|(((
319 +Temperature(DS18B20)
320 +)))|ADC|Digital in & Digital Interrupt|(((
321 +Distance measure by:
322 +1) LIDAR-Lite V3HP
323 +Or
324 +2) Ultrasonic Sensor
325 +)))|Reserved
337 337  
338 338  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
339 339  
329 +**Connection of LIDAR-Lite V3HP:**
340 340  
341 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
342 -
343 343  [[image:image-20230512173758-5.png||height="563" width="712"]]
344 344  
333 +**Connection to Ultrasonic Sensor:**
345 345  
346 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
347 -
348 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
349 -
350 350  [[image:image-20230512173903-6.png||height="596" width="715"]]
351 351  
352 -
353 353  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
354 354  
355 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
356 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
357 -|Value|BAT|(% style="width:183px" %)(((
358 -Temperature(DS18B20)(PC13)
359 -)))|(% style="width:173px" %)(((
360 -Digital in(PB15) & Digital Interrupt(PA8)
361 -)))|(% style="width:84px" %)(((
362 -ADC(PA4)
363 -)))|(% style="width:323px" %)(((
339 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2**
340 +|**Value**|BAT|(((
341 +Temperature(DS18B20)
342 +)))|Digital in & Digital Interrupt|ADC|(((
364 364  Distance measure by:1)TF-Mini plus LiDAR
365 -Or 2) TF-Luna LiDAR
366 -)))|(% style="width:188px" %)Distance signal  strength
344 +Or 
345 +2) TF-Luna LiDAR
346 +)))|Distance signal  strength
367 367  
368 368  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
369 369  
370 -
371 371  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
372 372  
373 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
352 +Need to remove R3 and R4 resistors to get low power.
374 374  
375 375  [[image:image-20230512180609-7.png||height="555" width="802"]]
376 376  
377 -
378 378  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
379 379  
380 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
358 +Need to remove R3 and R4 resistors to get low power.
381 381  
382 -[[image:image-20230610170047-1.png||height="452" width="799"]]
360 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]]
383 383  
362 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption.
384 384  
364 +
385 385  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
386 386  
387 -
388 388  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
389 389  
390 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
391 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
369 +|=(((
392 392  **Size(bytes)**
393 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
394 -|Value|(% style="width:68px" %)(((
395 -ADC1(PA4)
371 +)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 318px;" %)2|=(% style="width: 172px;" %)2|=1
372 +|**Value**|(% style="width:68px" %)(((
373 +ADC
374 +
375 +(PA0)
396 396  )))|(% style="width:75px" %)(((
397 -ADC2(PA5)
398 -)))|(((
399 -ADC3(PA8)
400 -)))|(((
401 -Digital Interrupt(PB15)
402 -)))|(% style="width:304px" %)(((
403 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
404 -)))|(% style="width:163px" %)(((
405 -Humidity(SHT20 or SHT31)
406 -)))|(% style="width:53px" %)Bat
377 +ADC2
407 407  
408 -[[image:image-20230513110214-6.png]]
379 +(PA1)
380 +)))|ADC3 (PA4)|(((
381 +Digital in(PA12)&Digital Interrupt1(PB14)
382 +)))|(% style="width:318px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|(% style="width:172px" %)Humidity(SHT20 or SHT31)|Bat
409 409  
384 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]]
410 410  
386 +
411 411  ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
412 412  
389 +[[image:image-20230512170701-3.png||height="565" width="743"]]
413 413  
414 414  This mode has total 11 bytes. As shown below:
415 415  
416 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
417 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
418 -|Value|BAT|(% style="width:186px" %)(((
419 -Temperature1(DS18B20)(PC13)
393 +(% style="width:1017px" %)
394 +|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
395 +|**Value**|BAT|(% style="width:186px" %)(((
396 +Temperature1(DS18B20)
397 +(PC13)
420 420  )))|(% style="width:82px" %)(((
421 -ADC(PA4)
399 +ADC
400 +
401 +(PA4)
422 422  )))|(% style="width:210px" %)(((
423 -Digital in(PB15) & Digital Interrupt(PA8) 
403 +Digital in & Digital Interrupt
404 +
405 +(PB15)  &  (PA8) 
424 424  )))|(% style="width:191px" %)Temperature2(DS18B20)
425 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
407 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
408 +(PB8)
426 426  
427 427  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
428 428  
429 429  
430 -[[image:image-20230513134006-1.png||height="559" width="736"]]
431 -
432 -
433 433  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
434 434  
435 -
436 436  [[image:image-20230512164658-2.png||height="532" width="729"]]
437 437  
438 438  Each HX711 need to be calibrated before used. User need to do below two steps:
439 439  
440 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
441 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
419 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
420 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
442 442  1. (((
443 443  Weight has 4 bytes, the unit is g.
444 -
445 -
446 -
447 447  )))
448 448  
449 449  For example:
450 450  
451 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
427 +**AT+GETSENSORVALUE =0**
452 452  
453 453  Response:  Weight is 401 g
454 454  
455 455  Check the response of this command and adjust the value to match the real value for thing.
456 456  
457 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
458 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
433 +(% style="width:982px" %)
434 +|=(((
459 459  **Size(bytes)**
460 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
461 -|Value|BAT|(% style="width:193px" %)(((
462 -Temperature(DS18B20)(PC13)
463 -)))|(% style="width:85px" %)(((
464 -ADC(PA4)
465 -)))|(% style="width:186px" %)(((
466 -Digital in(PB15) & Digital Interrupt(PA8)
467 -)))|(% style="width:100px" %)Weight
436 +)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4**
437 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(% style="width:282px" %)(((
438 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
468 468  
440 +(PC13)
441 +
442 +
443 +)))|(% style="width:119px" %)(((
444 +[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]
445 +
446 +(PA4)
447 +)))|(% style="width:279px" %)(((
448 +[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]
449 +
450 +(PB15)  &  (PA8)
451 +)))|(% style="width:106px" %)Weight
452 +
469 469  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
470 470  
471 471  
472 472  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
473 473  
474 -
475 475  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
476 476  
477 477  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -478,184 +478,86 @@
478 478  
479 479  [[image:image-20230512181814-9.png||height="543" width="697"]]
480 480  
464 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen.
481 481  
482 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
466 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4**
467 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(((
468 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
469 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count
483 483  
484 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
485 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
486 -|Value|BAT|(% style="width:256px" %)(((
487 -Temperature(DS18B20)(PC13)
488 -)))|(% style="width:108px" %)(((
489 -ADC(PA4)
490 -)))|(% style="width:126px" %)(((
491 -Digital in(PB15)
492 -)))|(% style="width:145px" %)(((
493 -Count(PA8)
494 -)))
495 -
496 496  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
497 497  
498 498  
499 499  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
500 500  
476 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]]
501 501  
502 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
503 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
478 +|=(((
504 504  **Size(bytes)**
505 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
506 -|Value|BAT|(% style="width:188px" %)(((
507 -Temperature(DS18B20)
508 -(PC13)
509 -)))|(% style="width:83px" %)(((
510 -ADC(PA5)
511 -)))|(% style="width:184px" %)(((
512 -Digital Interrupt1(PA8)
513 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
480 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2
481 +|**Value**|BAT|Temperature(DS18B20)|ADC|(((
482 +Digital in(PA12)&Digital Interrupt1(PB14)
483 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved
514 514  
515 -[[image:image-20230513111203-7.png||height="324" width="975"]]
516 -
517 -
518 518  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
519 519  
520 -
521 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
522 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
487 +|=(((
523 523  **Size(bytes)**
524 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
525 -|Value|BAT|(% style="width:207px" %)(((
526 -Temperature(DS18B20)
527 -(PC13)
528 -)))|(% style="width:94px" %)(((
529 -ADC1(PA4)
530 -)))|(% style="width:198px" %)(((
531 -Digital Interrupt(PB15)
532 -)))|(% style="width:84px" %)(((
533 -ADC2(PA5)
534 -)))|(% style="width:82px" %)(((
535 -ADC3(PA8)
489 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2
490 +|**Value**|BAT|Temperature(DS18B20)|(((
491 +ADC1(PA0)
492 +)))|(((
493 +Digital in
494 +& Digital Interrupt(PB14)
495 +)))|(((
496 +ADC2(PA1)
497 +)))|(((
498 +ADC3(PA4)
536 536  )))
537 537  
538 -[[image:image-20230513111231-8.png||height="335" width="900"]]
501 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]]
539 539  
540 540  
541 541  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
542 542  
543 -
544 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
545 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
506 +|=(((
546 546  **Size(bytes)**
547 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
548 -|Value|BAT|(((
549 -Temperature
550 -(DS18B20)(PC13)
508 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4
509 +|**Value**|BAT|(((
510 +Temperature1(PB3)
551 551  )))|(((
552 -Temperature2
553 -(DS18B20)(PB9)
512 +Temperature2(PA9)
554 554  )))|(((
555 -Digital Interrupt
556 -(PB15)
557 -)))|(% style="width:193px" %)(((
558 -Temperature3
559 -(DS18B20)(PB8)
560 -)))|(% style="width:78px" %)(((
561 -Count1(PA8)
562 -)))|(% style="width:78px" %)(((
563 -Count2(PA4)
514 +Digital in
515 +& Digital Interrupt(PA4)
516 +)))|(((
517 +Temperature3(PA10)
518 +)))|(((
519 +Count1(PB14)
520 +)))|(((
521 +Count2(PB15)
564 564  )))
565 565  
566 -[[image:image-20230513111255-9.png||height="341" width="899"]]
524 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]]
567 567  
568 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
526 +**The newly added AT command is issued correspondingly:**
569 569  
570 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
528 +**~ AT+INTMOD1** ** PB14**  pin:  Corresponding downlink:  **06 00 00 xx**
571 571  
572 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
530 +**~ AT+INTMOD2**  **PB15** pin:  Corresponding downlink:**  06 00 01 xx**
573 573  
574 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
532 +**~ AT+INTMOD3**  **PA4**  pin:  Corresponding downlink:  ** 06 00 02 xx**
575 575  
534 +**AT+SETCNT=aa,bb** 
576 576  
577 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
536 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb
578 578  
579 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
538 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb
580 580  
581 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
582 582  
583 583  
584 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
585 -
586 -
587 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
588 -
589 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
590 -
591 -
592 -===== 2.3.2.10.a  Uplink, PWM input capture =====
593 -
594 -
595 -[[image:image-20230817172209-2.png||height="439" width="683"]]
596 -
597 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
598 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
599 -|Value|Bat|(% style="width:191px" %)(((
600 -Temperature(DS18B20)(PC13)
601 -)))|(% style="width:78px" %)(((
602 -ADC(PA4)
603 -)))|(% style="width:135px" %)(((
604 -PWM_Setting
605 -
606 -&Digital Interrupt(PA8)
607 -)))|(% style="width:70px" %)(((
608 -Pulse period
609 -)))|(% style="width:89px" %)(((
610 -Duration of high level
611 -)))
612 -
613 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
614 -
615 -
616 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
617 -
618 -**Frequency:**
619 -
620 -(% class="MsoNormal" %)
621 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
622 -
623 -(% class="MsoNormal" %)
624 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
625 -
626 -
627 -(% class="MsoNormal" %)
628 -**Duty cycle:**
629 -
630 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
631 -
632 -[[image:image-20230818092200-1.png||height="344" width="627"]]
633 -
634 -
635 -===== 2.3.2.10.b  Downlink, PWM output =====
636 -
637 -
638 -[[image:image-20230817173800-3.png||height="412" width="685"]]
639 -
640 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
641 -
642 - xx xx xx is the output frequency, the unit is HZ.
643 -
644 - yy is the duty cycle of the output, the unit is %.
645 -
646 - zz zz is the time delay of the output, the unit is ms.
647 -
648 -
649 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
650 -
651 -The oscilloscope displays as follows:
652 -
653 -[[image:image-20230817173858-5.png||height="694" width="921"]]
654 -
655 -
656 656  === 2.3.3  ​Decode payload ===
657 657  
658 -
659 659  While using TTN V3 network, you can add the payload format to decode the payload.
660 660  
661 661  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -662,14 +662,13 @@
662 662  
663 663  The payload decoder function for TTN V3 are here:
664 664  
665 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
550 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
666 666  
667 667  
668 668  ==== 2.3.3.1 Battery Info ====
669 669  
555 +Check the battery voltage for SN50v3.
670 670  
671 -Check the battery voltage for SN50v3-LB.
672 -
673 673  Ex1: 0x0B45 = 2885mV
674 674  
675 675  Ex2: 0x0B49 = 2889mV
... ... @@ -677,18 +677,16 @@
677 677  
678 678  ==== 2.3.3.2  Temperature (DS18B20) ====
679 679  
564 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
680 680  
681 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
566 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
682 682  
683 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
568 +**Connection:**
684 684  
685 -(% style="color:blue" %)**Connection:**
686 -
687 687  [[image:image-20230512180718-8.png||height="538" width="647"]]
688 688  
572 +**Example**:
689 689  
690 -(% style="color:blue" %)**Example**:
691 -
692 692  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
693 693  
694 694  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -698,7 +698,6 @@
698 698  
699 699  ==== 2.3.3.3 Digital Input ====
700 700  
701 -
702 702  The digital input for pin PB15,
703 703  
704 704  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -706,65 +706,51 @@
706 706  
707 707  (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
708 708  (((
709 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
710 -
711 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
712 -
713 -
590 +Note:The maximum voltage input supports 3.6V.
714 714  )))
715 715  
593 +(% class="wikigeneratedid" %)
716 716  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
717 717  
596 +The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
718 718  
719 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
720 -
721 721  When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
722 722  
723 723  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
724 724  
725 725  
726 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
727 -
728 -
729 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
730 -
731 -[[image:image-20230811113449-1.png||height="370" width="608"]]
732 -
733 733  ==== 2.3.3.5 Digital Interrupt ====
734 734  
605 +Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
735 735  
736 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
607 +**~ Interrupt connection method:**
737 737  
738 -(% style="color:blue" %)** Interrupt connection method:**
609 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]]
739 739  
740 -[[image:image-20230513105351-5.png||height="147" width="485"]]
611 +**Example to use with door sensor :**
741 741  
742 -
743 -(% style="color:blue" %)**Example to use with door sensor :**
744 -
745 745  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
746 746  
747 747  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
748 748  
749 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
617 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window.
750 750  
619 +**~ Below is the installation example:**
751 751  
752 -(% style="color:blue" %)**Below is the installation example:**
621 +Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows:
753 753  
754 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
755 -
756 756  * (((
757 -One pin to SN50v3-LB's PA8 pin
624 +One pin to LSN50's PB14 pin
758 758  )))
759 759  * (((
760 -The other pin to SN50v3-LB's VDD pin
627 +The other pin to LSN50's VCC pin
761 761  )))
762 762  
763 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
630 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage.
764 764  
765 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
632 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
766 766  
767 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
634 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored.
768 768  
769 769  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
770 770  
... ... @@ -774,33 +774,29 @@
774 774  
775 775  The command is:
776 776  
777 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
644 +**AT+INTMOD=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
778 778  
779 779  Below shows some screen captures in TTN V3:
780 780  
781 781  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
782 782  
650 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
783 783  
784 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
785 -
786 786  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
787 787  
788 788  
789 789  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
790 790  
791 -
792 792  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
793 793  
794 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
659 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor.
795 795  
796 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
661 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference.
797 797  
798 -
799 799  Below is the connection to SHT20/ SHT31. The connection is as below:
800 800  
801 -[[image:image-20230610170152-2.png||height="501" width="846"]]
665 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]]
802 802  
803 -
804 804  The device will be able to get the I2C sensor data now and upload to IoT Server.
805 805  
806 806  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
... ... @@ -818,26 +818,20 @@
818 818  
819 819  ==== 2.3.3.7  ​Distance Reading ====
820 820  
684 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
821 821  
822 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
823 823  
824 -
825 825  ==== 2.3.3.8 Ultrasonic Sensor ====
826 826  
827 -
828 828  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
829 829  
830 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
691 +The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
831 831  
832 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
833 -
834 834  The picture below shows the connection:
835 835  
836 -[[image:image-20230512173903-6.png||height="596" width="715"]]
837 837  
696 +Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
838 838  
839 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
840 -
841 841  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
842 842  
843 843  **Example:**
... ... @@ -844,63 +844,50 @@
844 844  
845 845  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
846 846  
704 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]]
847 847  
848 -==== 2.3.3.9  Battery Output - BAT pin ====
706 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]]
849 849  
708 +You can see the serial output in ULT mode as below:
850 850  
851 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
710 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]]
852 852  
712 +**In TTN V3 server:**
853 853  
854 -==== 2.3.3.10  +5V Output ====
714 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]]
855 855  
716 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]]
856 856  
857 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
718 +==== 2.3.3.9  Battery Output - BAT pin ====
858 858  
859 -The 5V output time can be controlled by AT Command.
720 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
860 860  
861 -(% style="color:blue" %)**AT+5VT=1000**
862 862  
863 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
723 +==== 2.3.3.10  +5V Output ====
864 864  
865 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
725 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
866 866  
727 +The 5V output time can be controlled by AT Command.
867 867  
868 -==== 2.3.3.11  BH1750 Illumination Sensor ====
729 +**AT+5VT=1000**
869 869  
731 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
870 870  
871 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
733 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
872 872  
873 -[[image:image-20230512172447-4.png||height="416" width="712"]]
874 874  
875 875  
876 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
737 +==== 2.3.3.11  BH1750 Illumination Sensor ====
877 877  
739 +MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
878 878  
879 -==== 2.3.3.12  PWM MOD ====
741 +[[image:image-20230512172447-4.png||height="593" width="1015"]]
880 880  
743 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]]
881 881  
882 -* (((
883 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
884 -)))
885 -* (((
886 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
887 -)))
888 888  
889 - [[image:image-20230817183249-3.png||height="320" width="417"]]
746 +==== 2.3.3.12  Working MOD ====
890 890  
891 -* (((
892 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
893 -)))
894 -* (((
895 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
896 -
897 -
898 -
899 -)))
900 -
901 -==== 2.3.3.13  Working MOD ====
902 -
903 -
904 904  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
905 905  
906 906  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -913,12 +913,7 @@
913 913  * 3: MOD4
914 914  * 4: MOD5
915 915  * 5: MOD6
916 -* 6: MOD7
917 -* 7: MOD8
918 -* 8: MOD9
919 -* 9: MOD10
920 920  
921 -
922 922  == 2.4 Payload Decoder file ==
923 923  
924 924  
... ... @@ -926,9 +926,10 @@
926 926  
927 927  In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
928 928  
929 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
768 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
930 930  
931 931  
771 +
932 932  == 2.5 Frequency Plans ==
933 933  
934 934  
... ... @@ -948,7 +948,6 @@
948 948  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
949 949  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
950 950  
951 -
952 952  == 3.2 General Commands ==
953 953  
954 954  
... ... @@ -965,7 +965,7 @@
965 965  == 3.3 Commands special design for SN50v3-LB ==
966 966  
967 967  
968 -These commands only valid for SN50v3-LB, as below:
807 +These commands only valid for S31x-LB, as below:
969 969  
970 970  
971 971  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -976,7 +976,7 @@
976 976  (% style="color:blue" %)**AT Command: AT+TDC**
977 977  
978 978  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
979 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
818 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
980 980  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
981 981  30000
982 982  OK
... ... @@ -996,32 +996,30 @@
996 996  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
997 997  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
998 998  
999 -
1000 1000  === 3.3.2 Get Device Status ===
1001 1001  
840 +Send a LoRaWAN downlink to ask device send Alarm settings.
1002 1002  
1003 -Send a LoRaWAN downlink to ask the device to send its status.
842 +(% style="color:blue" %)**Downlink Payload **(%%)0x26 01
1004 1004  
1005 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
844 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
1006 1006  
1007 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
1008 1008  
847 +=== 3.3.7 Set Interrupt Mode ===
1009 1009  
1010 -=== 3.3.3 Set Interrupt Mode ===
1011 1011  
1012 -
1013 1013  Feature, Set Interrupt mode for GPIO_EXIT.
1014 1014  
1015 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
852 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1016 1016  
1017 1017  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1018 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1019 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
855 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
856 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1020 1020  0
1021 1021  OK
1022 1022  the mode is 0 =Disable Interrupt
1023 1023  )))
1024 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
861 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
1025 1025  Set Transmit Interval
1026 1026  0. (Disable Interrupt),
1027 1027  ~1. (Trigger by rising and falling edge)
... ... @@ -1028,11 +1028,6 @@
1028 1028  2. (Trigger by falling edge)
1029 1029  3. (Trigger by rising edge)
1030 1030  )))|(% style="width:157px" %)OK
1031 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1032 -Set Transmit Interval
1033 -trigger by rising edge.
1034 -)))|(% style="width:157px" %)OK
1035 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1036 1036  
1037 1037  (% style="color:blue" %)**Downlink Command: 0x06**
1038 1038  
... ... @@ -1040,148 +1040,9 @@
1040 1040  
1041 1041  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1042 1042  
1043 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1044 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1045 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1046 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
875 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
876 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1047 1047  
1048 -
1049 -=== 3.3.4 Set Power Output Duration ===
1050 -
1051 -
1052 -Control the output duration 5V . Before each sampling, device will
1053 -
1054 -~1. first enable the power output to external sensor,
1055 -
1056 -2. keep it on as per duration, read sensor value and construct uplink payload
1057 -
1058 -3. final, close the power output.
1059 -
1060 -(% style="color:blue" %)**AT Command: AT+5VT**
1061 -
1062 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1063 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1064 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1065 -500(default)
1066 -OK
1067 -)))
1068 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1069 -Close after a delay of 1000 milliseconds.
1070 -)))|(% style="width:157px" %)OK
1071 -
1072 -(% style="color:blue" %)**Downlink Command: 0x07**
1073 -
1074 -Format: Command Code (0x07) followed by 2 bytes.
1075 -
1076 -The first and second bytes are the time to turn on.
1077 -
1078 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1079 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1080 -
1081 -
1082 -=== 3.3.5 Set Weighing parameters ===
1083 -
1084 -
1085 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1086 -
1087 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1088 -
1089 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1090 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1091 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1092 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1093 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1094 -
1095 -(% style="color:blue" %)**Downlink Command: 0x08**
1096 -
1097 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1098 -
1099 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1100 -
1101 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1102 -
1103 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1104 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1105 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1106 -
1107 -
1108 -=== 3.3.6 Set Digital pulse count value ===
1109 -
1110 -
1111 -Feature: Set the pulse count value.
1112 -
1113 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1114 -
1115 -(% style="color:blue" %)**AT Command: AT+SETCNT**
1116 -
1117 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1118 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1119 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1120 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1121 -
1122 -(% style="color:blue" %)**Downlink Command: 0x09**
1123 -
1124 -Format: Command Code (0x09) followed by 5 bytes.
1125 -
1126 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1127 -
1128 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1129 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1130 -
1131 -
1132 -=== 3.3.7 Set Workmode ===
1133 -
1134 -
1135 -Feature: Switch working mode.
1136 -
1137 -(% style="color:blue" %)**AT Command: AT+MOD**
1138 -
1139 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1140 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1141 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1142 -OK
1143 -)))
1144 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1145 -OK
1146 -Attention:Take effect after ATZ
1147 -)))
1148 -
1149 -(% style="color:blue" %)**Downlink Command: 0x0A**
1150 -
1151 -Format: Command Code (0x0A) followed by 1 bytes.
1152 -
1153 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1154 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1155 -
1156 -
1157 -=== 3.3.8 PWM setting ===
1158 -
1159 -
1160 -Feature: Set the time acquisition unit for PWM input capture.
1161 -
1162 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1163 -
1164 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1165 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1166 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1167 -0(default)
1168 -
1169 -OK
1170 -)))
1171 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1172 -OK
1173 -
1174 -)))
1175 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1176 -
1177 -(% style="color:blue" %)**Downlink Command: 0x0C**
1178 -
1179 -Format: Command Code (0x0C) followed by 1 bytes.
1180 -
1181 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1182 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1183 -
1184 -
1185 1185  = 4. Battery & Power Consumption =
1186 1186  
1187 1187  
... ... @@ -1194,45 +1194,28 @@
1194 1194  
1195 1195  
1196 1196  (% class="wikigeneratedid" %)
1197 -**User can change firmware SN50v3-LB to:**
890 +User can change firmware SN50v3-LB to:
1198 1198  
1199 1199  * Change Frequency band/ region.
1200 1200  * Update with new features.
1201 1201  * Fix bugs.
1202 1202  
1203 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
896 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1204 1204  
1205 -**Methods to Update Firmware:**
1206 1206  
1207 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1208 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
899 +Methods to Update Firmware:
1209 1209  
901 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
902 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1210 1210  
1211 1211  = 6. FAQ =
1212 1212  
1213 1213  == 6.1 Where can i find source code of SN50v3-LB? ==
1214 1214  
1215 -
1216 1216  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1217 1217  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1218 1218  
1219 1219  
1220 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1221 -
1222 -
1223 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1224 -
1225 -
1226 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1227 -
1228 -
1229 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1230 -
1231 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1232 -
1233 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1234 -
1235 -
1236 1236  = 7. Order Info =
1237 1237  
1238 1238  
... ... @@ -1256,10 +1256,8 @@
1256 1256  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1257 1257  * (% style="color:red" %)**NH**(%%): No Hole
1258 1258  
1259 -
1260 1260  = 8. ​Packing Info =
1261 1261  
1262 -
1263 1263  (% style="color:#037691" %)**Package Includes**:
1264 1264  
1265 1265  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1271,10 +1271,8 @@
1271 1271  * Package Size / pcs : cm
1272 1272  * Weight / pcs : g
1273 1273  
1274 -
1275 1275  = 9. Support =
1276 1276  
1277 1277  
1278 1278  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1279 -
1280 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
952 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230513111255-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0