Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 21 removed)
- image-20230513110214-6.png
- image-20230513111203-7.png
- image-20230513111231-8.png
- image-20230513111255-9.png
- image-20230513134006-1.png
- image-20230515135611-1.jpeg
- image-20230610162852-1.png
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor NodeUser Manual1 +SN50v3-LB User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Saxer - Content
-
... ... @@ -1,5 +1,4 @@ 1 -(% style="text-align:center" %) 2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 1 +[[image:image-20230511201248-1.png||height="403" width="489"]] 3 3 4 4 5 5 ... ... @@ -16,20 +16,23 @@ 16 16 17 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 18 18 19 - 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, and so on. 23 23 21 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 22 + 23 + 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 26 + 26 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 27 27 29 + 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 32 + 30 30 == 1.2 Features == 31 31 32 - 33 33 * LoRaWAN 1.0.3 Class A 34 34 * Ultra-low power consumption 35 35 * Open-Source hardware/software ... ... @@ -40,10 +40,8 @@ 40 40 * Downlink to change configure 41 41 * 8500mAh Battery for long term use 42 42 43 - 44 44 == 1.3 Specification == 45 45 46 - 47 47 (% style="color:#037691" %)**Common DC Characteristics:** 48 48 49 49 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -78,10 +78,8 @@ 78 78 * Sleep Mode: 5uA @ 3.3v 79 79 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 80 80 81 - 82 82 == 1.4 Sleep mode and working mode == 83 83 84 - 85 85 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 86 86 87 87 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -106,7 +106,6 @@ 106 106 ))) 107 107 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 108 108 109 - 110 110 == 1.6 BLE connection == 111 111 112 112 ... ... @@ -125,7 +125,7 @@ 125 125 == 1.7 Pin Definitions == 126 126 127 127 128 -[[image:image-20230 610163213-1.png||height="404" width="699"]]125 +[[image:image-20230511203450-2.png||height="443" width="785"]] 129 129 130 130 131 131 == 1.8 Mechanical == ... ... @@ -138,9 +138,8 @@ 138 138 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 139 139 140 140 141 -== 1.9Hole Option ==138 +== Hole Option == 142 142 143 - 144 144 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 145 145 146 146 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -153,7 +153,7 @@ 153 153 == 2.1 How it works == 154 154 155 155 156 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S N50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 157 157 158 158 159 159 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -161,7 +161,7 @@ 161 161 162 162 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 163 163 164 -The LPS8 v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 165 165 166 166 167 167 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -210,7 +210,7 @@ 210 210 === 2.3.1 Device Status, FPORT~=5 === 211 211 212 212 213 -Users can use the downlink command(**0x26 01**) to ask SN50v3 -LBto send device configure detail, include device configure status. SN50v3-LBwill uplink a payload via FPort=5 to server.209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 214 214 215 215 The Payload format is as below. 216 216 ... ... @@ -218,44 +218,44 @@ 218 218 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 219 219 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 220 220 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 221 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 222 222 223 223 Example parse in TTNv3 224 224 225 225 226 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3 -LB, this value is 0x1C222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 227 227 228 228 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 229 229 230 230 (% style="color:#037691" %)**Frequency Band**: 231 231 232 -0x01: EU868 228 +*0x01: EU868 233 233 234 -0x02: US915 230 +*0x02: US915 235 235 236 -0x03: IN865 232 +*0x03: IN865 237 237 238 -0x04: AU915 234 +*0x04: AU915 239 239 240 -0x05: KZ865 236 +*0x05: KZ865 241 241 242 -0x06: RU864 238 +*0x06: RU864 243 243 244 -0x07: AS923 240 +*0x07: AS923 245 245 246 -0x08: AS923-1 242 +*0x08: AS923-1 247 247 248 -0x09: AS923-2 244 +*0x09: AS923-2 249 249 250 -0x0a: AS923-3 246 +*0x0a: AS923-3 251 251 252 -0x0b: CN470 248 +*0x0b: CN470 253 253 254 -0x0c: EU433 250 +*0x0c: EU433 255 255 256 -0x0d: KR920 252 +*0x0d: KR920 257 257 258 -0x0e: MA869 254 +*0x0e: MA869 259 259 260 260 261 261 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -279,199 +279,186 @@ 279 279 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 280 280 281 281 282 -SN50v3 -LBhas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command(% style="color:blue" %)**AT+MOD**(%%)to set SN50v3-LBto different working modes.278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 283 283 284 284 For example: 285 285 286 - (% style="color:blue" %)**AT+MOD=2 **(%%)282 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 287 287 288 288 289 289 (% style="color:red" %) **Important Notice:** 290 290 291 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 288 +1. All modes share the same Payload Explanation from HERE. 289 +1. By default, the device will send an uplink message every 20 minutes. 292 292 293 -2. All modes share the same Payload Explanation from HERE. 294 - 295 -3. By default, the device will send an uplink message every 20 minutes. 296 - 297 - 298 298 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 299 299 300 - 301 301 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 302 302 303 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 304 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 305 -|Value|Bat|(% style="width:191px" %)((( 306 -Temperature(DS18B20)(PC13) 307 -)))|(% style="width:78px" %)((( 308 -ADC(PA4) 295 +|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2** 296 +|**Value**|Bat|((( 297 +Temperature(DS18B20) 298 + 299 +(PC13) 300 +)))|((( 301 +ADC 302 + 303 +(PA4) 309 309 )))|(% style="width:216px" %)((( 310 -Digital in(PB15)&Digital Interrupt(PA8) 311 -)))|(% style="width:308px" %)((( 312 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 313 -)))|(% style="width:154px" %)((( 314 -Humidity(SHT20 or SHT31) 315 -))) 305 +Digital in & Digital Interrupt 316 316 307 + 308 +)))|(% style="width:342px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|(% style="width:171px" %)Humidity(SHT20 or SHT31) 309 + 317 317 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 318 318 319 319 320 320 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 321 321 322 - 323 323 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 324 324 325 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 326 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 327 -|Value|BAT|(% style="width:196px" %)((( 328 -Temperature(DS18B20)(PC13) 329 -)))|(% style="width:87px" %)((( 330 -ADC(PA4) 331 -)))|(% style="width:189px" %)((( 332 -Digital in(PB15) & Digital Interrupt(PA8) 333 -)))|(% style="width:208px" %)((( 334 -Distance measure by: 1) LIDAR-Lite V3HP 335 -Or 2) Ultrasonic Sensor 336 -)))|(% style="width:117px" %)Reserved 317 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 318 +|**Value**|BAT|((( 319 +Temperature(DS18B20) 320 +)))|ADC|Digital in & Digital Interrupt|((( 321 +Distance measure by: 322 +1) LIDAR-Lite V3HP 323 +Or 324 +2) Ultrasonic Sensor 325 +)))|Reserved 337 337 338 338 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 339 339 329 +**Connection of LIDAR-Lite V3HP:** 340 340 341 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 342 - 343 343 [[image:image-20230512173758-5.png||height="563" width="712"]] 344 344 333 +**Connection to Ultrasonic Sensor:** 345 345 346 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 347 - 348 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 349 - 350 350 [[image:image-20230512173903-6.png||height="596" width="715"]] 351 351 352 - 353 353 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 354 354 355 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 356 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 357 -|Value|BAT|(% style="width:183px" %)((( 358 -Temperature(DS18B20)(PC13) 359 -)))|(% style="width:173px" %)((( 360 -Digital in(PB15) & Digital Interrupt(PA8) 361 -)))|(% style="width:84px" %)((( 362 -ADC(PA4) 363 -)))|(% style="width:323px" %)((( 339 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2** 340 +|**Value**|BAT|((( 341 +Temperature(DS18B20) 342 +)))|Digital in & Digital Interrupt|ADC|((( 364 364 Distance measure by:1)TF-Mini plus LiDAR 365 -Or 2) TF-Luna LiDAR 366 -)))|(% style="width:188px" %)Distance signal strength 344 +Or 345 +2) TF-Luna LiDAR 346 +)))|Distance signal strength 367 367 368 368 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 369 369 370 - 371 371 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 372 372 373 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**352 +Need to remove R3 and R4 resistors to get low power. 374 374 375 375 [[image:image-20230512180609-7.png||height="555" width="802"]] 376 376 377 - 378 378 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 379 379 380 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**358 +Need to remove R3 and R4 resistors to get low power. 381 381 382 -[[image:i mage-20230610170047-1.png||height="452" width="799"]]360 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]] 383 383 362 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption. 384 384 364 + 385 385 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 386 386 387 - 388 388 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 389 389 390 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 391 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 369 +|=((( 392 392 **Size(bytes)** 393 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 394 -|Value|(% style="width:68px" %)((( 395 -ADC1(PA4) 371 +)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 318px;" %)2|=(% style="width: 172px;" %)2|=1 372 +|**Value**|(% style="width:68px" %)((( 373 +ADC 374 + 375 +(PA0) 396 396 )))|(% style="width:75px" %)((( 397 -ADC2(PA5) 398 -)))|((( 399 -ADC3(PA8) 400 -)))|((( 401 -Digital Interrupt(PB15) 402 -)))|(% style="width:304px" %)((( 403 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 404 -)))|(% style="width:163px" %)((( 405 -Humidity(SHT20 or SHT31) 406 -)))|(% style="width:53px" %)Bat 377 +ADC2 407 407 408 -[[image:image-20230513110214-6.png]] 379 +(PA1) 380 +)))|ADC3 (PA4)|((( 381 +Digital in(PA12)&Digital Interrupt1(PB14) 382 +)))|(% style="width:318px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|(% style="width:172px" %)Humidity(SHT20 or SHT31)|Bat 409 409 384 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]] 410 410 386 + 411 411 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ==== 412 412 389 +[[image:image-20230512170701-3.png||height="565" width="743"]] 413 413 414 414 This mode has total 11 bytes. As shown below: 415 415 416 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 417 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 418 -|Value|BAT|(% style="width:186px" %)((( 419 -Temperature1(DS18B20)(PC13) 393 +(% style="width:1017px" %) 394 +|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2** 395 +|**Value**|BAT|(% style="width:186px" %)((( 396 +Temperature1(DS18B20) 397 +(PC13) 420 420 )))|(% style="width:82px" %)((( 421 -ADC(PA4) 399 +ADC 400 + 401 +(PA4) 422 422 )))|(% style="width:210px" %)((( 423 -Digital in(PB15) & Digital Interrupt(PA8) 403 +Digital in & Digital Interrupt 404 + 405 +(PB15) & (PA8) 424 424 )))|(% style="width:191px" %)Temperature2(DS18B20) 425 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 407 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 408 +(PB8) 426 426 427 427 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 428 428 429 429 430 -[[image:image-20230513134006-1.png||height="559" width="736"]] 431 - 432 - 433 433 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 434 434 435 - 436 436 [[image:image-20230512164658-2.png||height="532" width="729"]] 437 437 438 438 Each HX711 need to be calibrated before used. User need to do below two steps: 439 439 440 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%)to calibrate to Zero gram.441 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%)to adjust the Calibration Factor.419 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 420 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 442 442 1. ((( 443 443 Weight has 4 bytes, the unit is g. 444 - 445 - 446 - 447 447 ))) 448 448 449 449 For example: 450 450 451 - (% style="color:blue" %)**AT+GETSENSORVALUE =0**427 +**AT+GETSENSORVALUE =0** 452 452 453 453 Response: Weight is 401 g 454 454 455 455 Check the response of this command and adjust the value to match the real value for thing. 456 456 457 -(% border="1" cellspacing="4" style="background-color:#f2f2f2;width:520px" %)458 -|=( % style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((433 +(% style="width:982px" %) 434 +|=((( 459 459 **Size(bytes)** 460 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 461 -|Value|BAT|(% style="width:193px" %)((( 462 -Temperature(DS18B20)(PC13) 463 -)))|(% style="width:85px" %)((( 464 -ADC(PA4) 465 -)))|(% style="width:186px" %)((( 466 -Digital in(PB15) & Digital Interrupt(PA8) 467 -)))|(% style="width:100px" %)Weight 436 +)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4** 437 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(% style="width:282px" %)((( 438 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 468 468 440 +(PC13) 441 + 442 + 443 +)))|(% style="width:119px" %)((( 444 +[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]] 445 + 446 +(PA4) 447 +)))|(% style="width:279px" %)((( 448 +[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]] 449 + 450 +(PB15) & (PA8) 451 +)))|(% style="width:106px" %)Weight 452 + 469 469 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 470 470 471 471 472 472 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 473 473 474 - 475 475 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 476 476 477 477 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -478,184 +478,86 @@ 478 478 479 479 [[image:image-20230512181814-9.png||height="543" width="697"]] 480 480 464 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen. 481 481 482 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 466 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4** 467 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|((( 468 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 469 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count 483 483 484 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 485 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 486 -|Value|BAT|(% style="width:256px" %)((( 487 -Temperature(DS18B20)(PC13) 488 -)))|(% style="width:108px" %)((( 489 -ADC(PA4) 490 -)))|(% style="width:126px" %)((( 491 -Digital in(PB15) 492 -)))|(% style="width:145px" %)((( 493 -Count(PA8) 494 -))) 495 - 496 496 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 497 497 498 498 499 499 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 500 500 476 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]] 501 501 502 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 503 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 478 +|=((( 504 504 **Size(bytes)** 505 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 506 -|Value|BAT|(% style="width:188px" %)((( 507 -Temperature(DS18B20) 508 -(PC13) 509 -)))|(% style="width:83px" %)((( 510 -ADC(PA5) 511 -)))|(% style="width:184px" %)((( 512 -Digital Interrupt1(PA8) 513 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved 480 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2 481 +|**Value**|BAT|Temperature(DS18B20)|ADC|((( 482 +Digital in(PA12)&Digital Interrupt1(PB14) 483 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved 514 514 515 -[[image:image-20230513111203-7.png||height="324" width="975"]] 516 - 517 - 518 518 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 519 519 520 - 521 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 522 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 487 +|=((( 523 523 **Size(bytes)** 524 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 525 -|Value|BAT|(% style="width:207px" %)((( 526 -Temperature(DS18B20) 527 -(PC13) 528 -)))|(% style="width:94px" %)((( 529 -ADC1(PA4) 530 -)))|(% style="width:198px" %)((( 531 -Digital Interrupt(PB15) 532 -)))|(% style="width:84px" %)((( 533 -ADC2(PA5) 534 -)))|(% style="width:82px" %)((( 535 -ADC3(PA8) 489 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2 490 +|**Value**|BAT|Temperature(DS18B20)|((( 491 +ADC1(PA0) 492 +)))|((( 493 +Digital in 494 +& Digital Interrupt(PB14) 495 +)))|((( 496 +ADC2(PA1) 497 +)))|((( 498 +ADC3(PA4) 536 536 ))) 537 537 538 -[[image:image-202 30513111231-8.png||height="335" width="900"]]501 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]] 539 539 540 540 541 541 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 542 542 543 - 544 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 545 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 506 +|=((( 546 546 **Size(bytes)** 547 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 548 -|Value|BAT|((( 549 -Temperature 550 -(DS18B20)(PC13) 508 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4 509 +|**Value**|BAT|((( 510 +Temperature1(PB3) 551 551 )))|((( 552 -Temperature2 553 -(DS18B20)(PB9) 512 +Temperature2(PA9) 554 554 )))|((( 555 -Digital Interrupt 556 -(PB15) 557 -)))|(% style="width:193px" %)((( 558 -Temperature3 559 -(DS18B20)(PB8) 560 -)))|(% style="width:78px" %)((( 561 -Count1(PA8) 562 -)))|(% style="width:78px" %)((( 563 -Count2(PA4) 514 +Digital in 515 +& Digital Interrupt(PA4) 516 +)))|((( 517 +Temperature3(PA10) 518 +)))|((( 519 +Count1(PB14) 520 +)))|((( 521 +Count2(PB15) 564 564 ))) 565 565 566 -[[image:image-202 30513111255-9.png||height="341"width="899"]]524 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]] 567 567 568 - (% style="color:blue" %)**The newly added AT command is issued correspondingly:**526 +**The newly added AT command is issued correspondingly:** 569 569 570 - (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)pin: Corresponding downlink:(% style="color:#037691" %)**06 00 00 xx**528 +**~ AT+INTMOD1** ** PB14** pin: Corresponding downlink: **06 00 00 xx** 571 571 572 - (% style="color:#037691" %)** AT+INTMOD2PA4**(%%)pin: Corresponding downlink:(% style="color:#037691"%)**060001 xx**530 +**~ AT+INTMOD2** **PB15** pin: Corresponding downlink:** 06 00 01 xx** 573 573 574 - (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)pin: Corresponding downlink:(% style="color:#037691" %)** 06 00 02 xx**532 +**~ AT+INTMOD3** **PA4** pin: Corresponding downlink: ** 06 00 02 xx** 575 575 534 +**AT+SETCNT=aa,bb** 576 576 577 - (%style="color:blue"%)**AT+SETCNT=aa,bb**536 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb 578 578 579 -When AA is 1, set the count of PA8pin to BB Corresponding downlink:09 01bb bb bb bb538 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb 580 580 581 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 582 582 583 583 584 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 585 - 586 - 587 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 588 - 589 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 590 - 591 - 592 -===== 2.3.2.10.a Uplink, PWM input capture ===== 593 - 594 - 595 -[[image:image-20230817172209-2.png||height="439" width="683"]] 596 - 597 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 598 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 599 -|Value|Bat|(% style="width:191px" %)((( 600 -Temperature(DS18B20)(PC13) 601 -)))|(% style="width:78px" %)((( 602 -ADC(PA4) 603 -)))|(% style="width:135px" %)((( 604 -PWM_Setting 605 - 606 -&Digital Interrupt(PA8) 607 -)))|(% style="width:70px" %)((( 608 -Pulse period 609 -)))|(% style="width:89px" %)((( 610 -Duration of high level 611 -))) 612 - 613 -[[image:image-20230817170702-1.png||height="161" width="1044"]] 614 - 615 - 616 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 617 - 618 -**Frequency:** 619 - 620 -(% class="MsoNormal" %) 621 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 622 - 623 -(% class="MsoNormal" %) 624 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 625 - 626 - 627 -(% class="MsoNormal" %) 628 -**Duty cycle:** 629 - 630 -Duty cycle= Duration of high level/ Pulse period*100 ~(%). 631 - 632 -[[image:image-20230818092200-1.png||height="344" width="627"]] 633 - 634 - 635 -===== 2.3.2.10.b Downlink, PWM output ===== 636 - 637 - 638 -[[image:image-20230817173800-3.png||height="412" width="685"]] 639 - 640 -Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 641 - 642 - xx xx xx is the output frequency, the unit is HZ. 643 - 644 - yy is the duty cycle of the output, the unit is %. 645 - 646 - zz zz is the time delay of the output, the unit is ms. 647 - 648 - 649 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 650 - 651 -The oscilloscope displays as follows: 652 - 653 -[[image:image-20230817173858-5.png||height="694" width="921"]] 654 - 655 - 656 656 === 2.3.3 Decode payload === 657 657 658 - 659 659 While using TTN V3 network, you can add the payload format to decode the payload. 660 660 661 661 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -662,14 +662,13 @@ 662 662 663 663 The payload decoder function for TTN V3 are here: 664 664 665 -SN50v3 -LBTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]550 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 666 666 667 667 668 668 ==== 2.3.3.1 Battery Info ==== 669 669 555 +Check the battery voltage for SN50v3. 670 670 671 -Check the battery voltage for SN50v3-LB. 672 - 673 673 Ex1: 0x0B45 = 2885mV 674 674 675 675 Ex2: 0x0B49 = 2889mV ... ... @@ -677,18 +677,16 @@ 677 677 678 678 ==== 2.3.3.2 Temperature (DS18B20) ==== 679 679 564 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload. 680 680 681 - If thereis aDS18B20 connectedtoPC13pin. The temperaturewillbeploadedin thepayload.566 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]] 682 682 683 - More DS18B20 cancheckthe [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]568 +**Connection:** 684 684 685 -(% style="color:blue" %)**Connection:** 686 - 687 687 [[image:image-20230512180718-8.png||height="538" width="647"]] 688 688 572 +**Example**: 689 689 690 -(% style="color:blue" %)**Example**: 691 - 692 692 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 693 693 694 694 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -698,7 +698,6 @@ 698 698 699 699 ==== 2.3.3.3 Digital Input ==== 700 700 701 - 702 702 The digital input for pin PB15, 703 703 704 704 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -706,65 +706,51 @@ 706 706 707 707 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %) 708 708 ((( 709 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 710 - 711 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 712 - 713 - 590 +Note:The maximum voltage input supports 3.6V. 714 714 ))) 715 715 593 +(% class="wikigeneratedid" %) 716 716 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 717 717 596 +The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 718 718 719 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 720 - 721 721 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 722 722 723 723 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 724 724 725 725 726 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 727 - 728 - 729 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 730 - 731 -[[image:image-20230811113449-1.png||height="370" width="608"]] 732 - 733 733 ==== 2.3.3.5 Digital Interrupt ==== 734 734 605 +Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 735 735 736 - DigitalInterruptrefers topinPA8, and there are differenttrigger methods. Whenthere is atrigger, the SN50v3-LB will send a packet tothe server.607 +**~ Interrupt connection method:** 737 737 738 - (% style="color:blue"%)** Interrupt connectionmethod:**609 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]] 739 739 740 - [[image:image-20230513105351-5.png||height="147"width="485"]]611 +**Example to use with door sensor :** 741 741 742 - 743 -(% style="color:blue" %)**Example to use with door sensor :** 744 - 745 745 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 746 746 747 747 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 748 748 749 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 v3-LBinterrupt interface to detect the status for the door or window.617 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window. 750 750 619 +**~ Below is the installation example:** 751 751 752 - (%style="color:blue"%)**Belowisthe installationexample:**621 +Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows: 753 753 754 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 755 - 756 756 * ((( 757 -One pin to SN50 v3-LB's PA8pin624 +One pin to LSN50's PB14 pin 758 758 ))) 759 759 * ((( 760 -The other pin to SN50 v3-LB's VDDpin627 +The other pin to LSN50's VCC pin 761 761 ))) 762 762 763 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and P A8will be at the VCC voltage.630 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage. 764 764 765 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%)and(% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.632 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 766 766 767 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v 3/1Mohm = 3uA which can be ignored.634 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored. 768 768 769 769 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]] 770 770 ... ... @@ -774,33 +774,29 @@ 774 774 775 775 The command is: 776 776 777 - (% style="color:blue" %)**AT+INTMOD1=1 **(%%)~/~/644 +**AT+INTMOD=1 **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 778 778 779 779 Below shows some screen captures in TTN V3: 780 780 781 781 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 782 782 650 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 783 783 784 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 785 - 786 786 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 787 787 788 788 789 789 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 790 790 791 - 792 792 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 793 793 794 -We have made an example to show how to use the I2C interface to connect to the SHT20 /SHT31 Temperature and Humidity Sensor.659 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. 795 795 796 - (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/SHT31code in SN50v3-LBwill be a good reference.**661 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference. 797 797 798 - 799 799 Below is the connection to SHT20/ SHT31. The connection is as below: 800 800 801 -[[image:image-202 30610170152-2.png||height="501" width="846"]]665 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]] 802 802 803 - 804 804 The device will be able to get the I2C sensor data now and upload to IoT Server. 805 805 806 806 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] ... ... @@ -818,26 +818,20 @@ 818 818 819 819 ==== 2.3.3.7 Distance Reading ==== 820 820 684 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 821 821 822 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 823 823 824 - 825 825 ==== 2.3.3.8 Ultrasonic Sensor ==== 826 826 827 - 828 828 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 829 829 830 -The SN50 v3-LBdetects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.691 +The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 831 831 832 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 833 - 834 834 The picture below shows the connection: 835 835 836 -[[image:image-20230512173903-6.png||height="596" width="715"]] 837 837 696 +Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 838 838 839 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 840 - 841 841 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 842 842 843 843 **Example:** ... ... @@ -844,63 +844,50 @@ 844 844 845 845 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 846 846 704 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]] 847 847 848 - ==== 2.3.3.9 Battery Output-BATpin==706 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]] 849 849 708 +You can see the serial output in ULT mode as below: 850 850 851 - The BAT pin of SN50v3-LB is connected to the Battery directly.If users want touse BAT pintopower anexternalsensor. User needto makesurethe externalsensor is oflow powerconsumption. Because the BAT pinis alwaysopen. If the externalsensorisof high powerconsumption. thebattery of SN50v3-LB will run out very soon.710 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]] 852 852 712 +**In TTN V3 server:** 853 853 854 - ==== 2.3.3.10+5VOutput===714 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]] 855 855 716 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]] 856 856 857 - SN50v3-LBwill enable+5V outputbeforeallsamplingand disable the +5v after all sampling.718 +==== 2.3.3.9 Battery Output - BAT pin ==== 858 858 859 -The 5 Voutput timecanbecontrolledbyATCommand.720 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 860 860 861 -(% style="color:blue" %)**AT+5VT=1000** 862 862 863 - Meansset 5V valid time to have1000ms.So the real5Voutputwill actually have 1000ms + sampling time for other sensors.723 +==== 2.3.3.10 +5V Output ==== 864 864 865 - Bydefault the**AT+5VT=500**.Ifthe externalsensorwhich require5vand require more time to get stablestate, user canuse this commandtoincrease thepowerON durationforthissensor.725 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 866 866 727 +The 5V output time can be controlled by AT Command. 867 867 868 -= === 2.3.3.11 BH1750Illumination Sensor ====729 +**AT+5VT=1000** 869 869 731 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 870 870 871 - MOD=1support thissensor.Thesensorvalueis in the8^^th^^and9^^th^^bytes.733 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 872 872 873 -[[image:image-20230512172447-4.png||height="416" width="712"]] 874 874 875 875 876 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]737 +==== 2.3.3.11 BH1750 Illumination Sensor ==== 877 877 739 +MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 878 878 879 - ====2.3.3.12PWM MOD====741 +[[image:image-20230512172447-4.png||height="593" width="1015"]] 880 880 743 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]] 881 881 882 -* ((( 883 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 884 -))) 885 -* ((( 886 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 887 -))) 888 888 889 - [[image:image-20230817183249-3.png||height="320"width="417"]]746 +==== 2.3.3.12 Working MOD ==== 890 890 891 -* ((( 892 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 893 -))) 894 -* ((( 895 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 896 - 897 - 898 - 899 -))) 900 - 901 -==== 2.3.3.13 Working MOD ==== 902 - 903 - 904 904 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 905 905 906 906 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -913,12 +913,7 @@ 913 913 * 3: MOD4 914 914 * 4: MOD5 915 915 * 5: MOD6 916 -* 6: MOD7 917 -* 7: MOD8 918 -* 8: MOD9 919 -* 9: MOD10 920 920 921 - 922 922 == 2.4 Payload Decoder file == 923 923 924 924 ... ... @@ -926,9 +926,10 @@ 926 926 927 927 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 928 928 929 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50 _v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]768 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]] 930 930 931 931 771 + 932 932 == 2.5 Frequency Plans == 933 933 934 934 ... ... @@ -948,7 +948,6 @@ 948 948 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 949 949 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 950 950 951 - 952 952 == 3.2 General Commands == 953 953 954 954 ... ... @@ -965,7 +965,7 @@ 965 965 == 3.3 Commands special design for SN50v3-LB == 966 966 967 967 968 -These commands only valid for S N50v3-LB, as below:807 +These commands only valid for S31x-LB, as below: 969 969 970 970 971 971 === 3.3.1 Set Transmit Interval Time === ... ... @@ -976,7 +976,7 @@ 976 976 (% style="color:blue" %)**AT Command: AT+TDC** 977 977 978 978 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 979 -|=(% style="width: 156px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**818 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 980 980 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 981 981 30000 982 982 OK ... ... @@ -996,32 +996,30 @@ 996 996 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 997 997 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 998 998 999 - 1000 1000 === 3.3.2 Get Device Status === 1001 1001 840 +Send a LoRaWAN downlink to ask device send Alarm settings. 1002 1002 1003 - Senda LoRaWANdownlinktosk thedevicetosend its status.842 +(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 1004 1004 1005 - (% style="color:blue"%)**DownlinkPayload:0x2601**844 +Sensor will upload Device Status via FPORT=5. See payload section for detail. 1006 1006 1007 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 1008 1008 847 +=== 3.3.7 Set Interrupt Mode === 1009 1009 1010 -=== 3.3.3 Set Interrupt Mode === 1011 1011 1012 - 1013 1013 Feature, Set Interrupt mode for GPIO_EXIT. 1014 1014 1015 -(% style="color:blue" %)**AT Command: AT+INTMOD 1,AT+INTMOD2,AT+INTMOD3**852 +(% style="color:blue" %)**AT Command: AT+INTMOD** 1016 1016 1017 1017 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1018 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1019 -|(% style="width:154px" %)AT+INTMOD 1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((855 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 856 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1020 1020 0 1021 1021 OK 1022 1022 the mode is 0 =Disable Interrupt 1023 1023 ))) 1024 -|(% style="width:154px" %)AT+INTMOD 1=2|(% style="width:196px" %)(((861 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 1025 1025 Set Transmit Interval 1026 1026 0. (Disable Interrupt), 1027 1027 ~1. (Trigger by rising and falling edge) ... ... @@ -1028,11 +1028,6 @@ 1028 1028 2. (Trigger by falling edge) 1029 1029 3. (Trigger by rising edge) 1030 1030 )))|(% style="width:157px" %)OK 1031 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 1032 -Set Transmit Interval 1033 -trigger by rising edge. 1034 -)))|(% style="width:157px" %)OK 1035 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK 1036 1036 1037 1037 (% style="color:blue" %)**Downlink Command: 0x06** 1038 1038 ... ... @@ -1040,148 +1040,9 @@ 1040 1040 1041 1041 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 1042 1042 1043 -* Example 1: Downlink Payload: 06000000 **~-~-->** AT+INTMOD1=0 1044 -* Example 2: Downlink Payload: 06000003 **~-~-->** AT+INTMOD1=3 1045 -* Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 1046 -* Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 875 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 876 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 1047 1047 1048 - 1049 -=== 3.3.4 Set Power Output Duration === 1050 - 1051 - 1052 -Control the output duration 5V . Before each sampling, device will 1053 - 1054 -~1. first enable the power output to external sensor, 1055 - 1056 -2. keep it on as per duration, read sensor value and construct uplink payload 1057 - 1058 -3. final, close the power output. 1059 - 1060 -(% style="color:blue" %)**AT Command: AT+5VT** 1061 - 1062 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1063 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1064 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1065 -500(default) 1066 -OK 1067 -))) 1068 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( 1069 -Close after a delay of 1000 milliseconds. 1070 -)))|(% style="width:157px" %)OK 1071 - 1072 -(% style="color:blue" %)**Downlink Command: 0x07** 1073 - 1074 -Format: Command Code (0x07) followed by 2 bytes. 1075 - 1076 -The first and second bytes are the time to turn on. 1077 - 1078 -* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1079 -* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1080 - 1081 - 1082 -=== 3.3.5 Set Weighing parameters === 1083 - 1084 - 1085 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 1086 - 1087 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1088 - 1089 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1090 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1091 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1092 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1093 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 1094 - 1095 -(% style="color:blue" %)**Downlink Command: 0x08** 1096 - 1097 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes. 1098 - 1099 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes. 1100 - 1101 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value. 1102 - 1103 -* Example 1: Downlink Payload: 0801 **~-~-->** AT+WEIGRE 1104 -* Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1105 -* Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1106 - 1107 - 1108 -=== 3.3.6 Set Digital pulse count value === 1109 - 1110 - 1111 -Feature: Set the pulse count value. 1112 - 1113 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. 1114 - 1115 -(% style="color:blue" %)**AT Command: AT+SETCNT** 1116 - 1117 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1118 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1119 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1120 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1121 - 1122 -(% style="color:blue" %)**Downlink Command: 0x09** 1123 - 1124 -Format: Command Code (0x09) followed by 5 bytes. 1125 - 1126 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized. 1127 - 1128 -* Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1129 -* Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1130 - 1131 - 1132 -=== 3.3.7 Set Workmode === 1133 - 1134 - 1135 -Feature: Switch working mode. 1136 - 1137 -(% style="color:blue" %)**AT Command: AT+MOD** 1138 - 1139 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1140 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1141 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1142 -OK 1143 -))) 1144 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1145 -OK 1146 -Attention:Take effect after ATZ 1147 -))) 1148 - 1149 -(% style="color:blue" %)**Downlink Command: 0x0A** 1150 - 1151 -Format: Command Code (0x0A) followed by 1 bytes. 1152 - 1153 -* Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1154 -* Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1155 - 1156 - 1157 -=== 3.3.8 PWM setting === 1158 - 1159 - 1160 -Feature: Set the time acquisition unit for PWM input capture. 1161 - 1162 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1163 - 1164 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1165 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1166 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1167 -0(default) 1168 - 1169 -OK 1170 -))) 1171 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)((( 1172 -OK 1173 - 1174 -))) 1175 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK 1176 - 1177 -(% style="color:blue" %)**Downlink Command: 0x0C** 1178 - 1179 -Format: Command Code (0x0C) followed by 1 bytes. 1180 - 1181 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1182 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1183 - 1184 - 1185 1185 = 4. Battery & Power Consumption = 1186 1186 1187 1187 ... ... @@ -1194,45 +1194,28 @@ 1194 1194 1195 1195 1196 1196 (% class="wikigeneratedid" %) 1197 - **User can change firmware SN50v3-LB to:**890 +User can change firmware SN50v3-LB to: 1198 1198 1199 1199 * Change Frequency band/ region. 1200 1200 * Update with new features. 1201 1201 * Fix bugs. 1202 1202 1203 - **Firmware and changelog can be downloaded from :****[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**896 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1204 1204 1205 -**Methods to Update Firmware:** 1206 1206 1207 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1208 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 899 +Methods to Update Firmware: 1209 1209 901 +* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 902 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1210 1210 1211 1211 = 6. FAQ = 1212 1212 1213 1213 == 6.1 Where can i find source code of SN50v3-LB? == 1214 1214 1215 - 1216 1216 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1217 1217 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1218 1218 1219 1219 1220 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1221 - 1222 - 1223 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1224 - 1225 - 1226 -== 6.3 How to put several sensors to a SN50v3-LB? == 1227 - 1228 - 1229 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1230 - 1231 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1232 - 1233 -[[image:image-20230810121434-1.png||height="242" width="656"]] 1234 - 1235 - 1236 1236 = 7. Order Info = 1237 1237 1238 1238 ... ... @@ -1256,10 +1256,8 @@ 1256 1256 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1257 1257 * (% style="color:red" %)**NH**(%%): No Hole 1258 1258 1259 - 1260 1260 = 8. Packing Info = 1261 1261 1262 - 1263 1263 (% style="color:#037691" %)**Package Includes**: 1264 1264 1265 1265 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1271,10 +1271,8 @@ 1271 1271 * Package Size / pcs : cm 1272 1272 * Weight / pcs : g 1273 1273 1274 - 1275 1275 = 9. Support = 1276 1276 1277 1277 1278 1278 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1279 - 1280 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]] 952 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- image-20230513110214-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -172.7 KB - Content
- image-20230513111203-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -79.9 KB - Content
- image-20230513111231-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -64.9 KB - Content
- image-20230513111255-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -70.4 KB - Content
- image-20230513134006-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.9 MB - Content
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.0 KB - Content
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.9 KB - Content