<
From version < 74.5 >
edited by Xiaoling
on 2023/08/19 16:07
To version < 90.1 >
edited by Mengting Qiu
on 2024/07/17 14:15
>
Change comment: Uploaded new attachment "image-20240717141512-1.jpeg", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.ting
Content
... ... @@ -1,10 +1,15 @@
1 +
2 +
1 1  (% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
4 +[[image:image-20240103095714-2.png]]
3 3  
4 4  
5 5  
6 -**Table of Contents:**
7 7  
9 +
10 +
11 +**Table of Contents:**
12 +
8 8  {{toc/}}
9 9  
10 10  
... ... @@ -14,20 +14,19 @@
14 14  
15 15  = 1. Introduction =
16 16  
17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
18 18  
19 19  
20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
24 -(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
25 25  
26 -(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
27 27  
28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 -
31 31  == 1.2 ​Features ==
32 32  
33 33  
... ... @@ -39,16 +39,15 @@
39 39  * Support wireless OTA update firmware
40 40  * Uplink on periodically
41 41  * Downlink to change configure
42 -* 8500mAh Battery for long term use
46 +* 8500mAh Li/SOCl2 Battery (SN50v3-LB)
47 +* Solar panel + 3000mAh Li-on battery (SN50v3-LS)
43 43  
44 -
45 -
46 46  == 1.3 Specification ==
47 47  
48 48  
49 49  (% style="color:#037691" %)**Common DC Characteristics:**
50 50  
51 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
54 +* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
52 52  * Operating Temperature: -40 ~~ 85°C
53 53  
54 54  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -80,8 +80,6 @@
80 80  * Sleep Mode: 5uA @ 3.3v
81 81  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
82 82  
83 -
84 -
85 85  == 1.4 Sleep mode and working mode ==
86 86  
87 87  
... ... @@ -93,11 +93,10 @@
93 93  == 1.5 Button & LEDs ==
94 94  
95 95  
96 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
97 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
97 97  
98 -
99 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
100 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
99 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
100 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
101 101  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
102 102  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
103 103  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -109,12 +109,10 @@
109 109  )))
110 110  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111 111  
112 -
113 -
114 114  == 1.6 BLE connection ==
115 115  
116 116  
117 -SN50v3-LB supports BLE remote configure.
115 +SN50v3-LB/LS supports BLE remote configure.
118 118  
119 119  
120 120  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -134,18 +134,23 @@
134 134  
135 135  == 1.8 Mechanical ==
136 136  
135 +=== 1.8.1 for LB version ===
137 137  
138 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
139 139  
140 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
138 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
141 141  
140 +
142 142  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
143 143  
143 +=== 1.8.2 for LS version ===
144 144  
145 +[[image:image-20231231203439-3.png||height="385" width="886"]]
146 +
147 +
145 145  == 1.9 Hole Option ==
146 146  
147 147  
148 -SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
151 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
149 149  
150 150  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
151 151  
... ... @@ -152,12 +152,12 @@
152 152  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
153 153  
154 154  
155 -= 2. Configure SN50v3-LB to connect to LoRaWAN network =
158 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
156 156  
157 157  == 2.1 How it works ==
158 158  
159 159  
160 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
163 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
161 161  
162 162  
163 163  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -168,9 +168,9 @@
168 168  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
169 169  
170 170  
171 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
174 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
172 172  
173 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
176 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
174 174  
175 175  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
176 176  
... ... @@ -198,12 +198,10 @@
198 198  
199 199  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
200 200  
204 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
201 201  
202 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
206 +Press the button for 5 seconds to activate the SN50v3-LB/LS.
203 203  
204 -
205 -Press the button for 5 seconds to activate the SN50v3-LB.
206 -
207 207  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
208 208  
209 209  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
... ... @@ -214,13 +214,13 @@
214 214  === 2.3.1 Device Status, FPORT~=5 ===
215 215  
216 216  
217 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
218 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
218 218  
219 219  The Payload format is as below.
220 220  
221 221  
222 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
223 -|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
223 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
224 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
224 224  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
225 225  |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
226 226  
... ... @@ -227,7 +227,7 @@
227 227  Example parse in TTNv3
228 228  
229 229  
230 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
231 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
231 231  
232 232  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
233 233  
... ... @@ -283,7 +283,7 @@
283 283  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
284 284  
285 285  
286 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
287 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
287 287  
288 288  For example:
289 289  
... ... @@ -292,7 +292,7 @@
292 292  
293 293  (% style="color:red" %) **Important Notice:**
294 294  
295 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
296 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
296 296  
297 297  2. All modes share the same Payload Explanation from HERE.
298 298  
... ... @@ -304,8 +304,8 @@
304 304  
305 305  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
306 306  
307 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
308 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
308 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
309 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
309 309  |Value|Bat|(% style="width:191px" %)(((
310 310  Temperature(DS18B20)(PC13)
311 311  )))|(% style="width:78px" %)(((
... ... @@ -326,8 +326,8 @@
326 326  
327 327  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
328 328  
329 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
330 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
330 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
331 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
331 331  |Value|BAT|(% style="width:196px" %)(((
332 332  Temperature(DS18B20)(PC13)
333 333  )))|(% style="width:87px" %)(((
... ... @@ -356,8 +356,8 @@
356 356  
357 357  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
358 358  
359 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
360 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
360 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
361 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2**
361 361  |Value|BAT|(% style="width:183px" %)(((
362 362  Temperature(DS18B20)(PC13)
363 363  )))|(% style="width:173px" %)(((
... ... @@ -391,10 +391,10 @@
391 391  
392 392  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
393 393  
394 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
395 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
395 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
396 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
396 396  **Size(bytes)**
397 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
398 +)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
398 398  |Value|(% style="width:68px" %)(((
399 399  ADC1(PA4)
400 400  )))|(% style="width:75px" %)(((
... ... @@ -417,8 +417,8 @@
417 417  
418 418  This mode has total 11 bytes. As shown below:
419 419  
420 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
421 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
421 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
422 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**
422 422  |Value|BAT|(% style="width:186px" %)(((
423 423  Temperature1(DS18B20)(PC13)
424 424  )))|(% style="width:82px" %)(((
... ... @@ -458,10 +458,10 @@
458 458  
459 459  Check the response of this command and adjust the value to match the real value for thing.
460 460  
461 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
462 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
462 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
463 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
463 463  **Size(bytes)**
464 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
465 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 198px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 49px;background-color:#4F81BD;color:white" %)**4**
465 465  |Value|BAT|(% style="width:193px" %)(((
466 466  Temperature(DS18B20)(PC13)
467 467  )))|(% style="width:85px" %)(((
... ... @@ -485,8 +485,8 @@
485 485  
486 486  (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
487 487  
488 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
489 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
489 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
490 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 77px;background-color:#4F81BD;color:white" %)**4**
490 490  |Value|BAT|(% style="width:256px" %)(((
491 491  Temperature(DS18B20)(PC13)
492 492  )))|(% style="width:108px" %)(((
... ... @@ -503,10 +503,10 @@
503 503  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
504 504  
505 505  
506 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
507 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
507 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
508 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
508 508  **Size(bytes)**
509 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
510 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
510 510  |Value|BAT|(% style="width:188px" %)(((
511 511  Temperature(DS18B20)
512 512  (PC13)
... ... @@ -522,10 +522,10 @@
522 522  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
523 523  
524 524  
525 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
526 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
526 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
527 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
527 527  **Size(bytes)**
528 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
529 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)2
529 529  |Value|BAT|(% style="width:207px" %)(((
530 530  Temperature(DS18B20)
531 531  (PC13)
... ... @@ -545,10 +545,10 @@
545 545  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
546 546  
547 547  
548 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
549 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
549 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
550 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
550 550  **Size(bytes)**
551 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
552 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4
552 552  |Value|BAT|(((
553 553  Temperature
554 554  (DS18B20)(PC13)
... ... @@ -585,9 +585,11 @@
585 585  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
586 586  
587 587  
588 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
589 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
589 589  
590 590  
592 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
593 +
591 591  In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
592 592  
593 593  [[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
... ... @@ -598,8 +598,8 @@
598 598  
599 599  [[image:image-20230817172209-2.png||height="439" width="683"]]
600 600  
601 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
602 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
604 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
605 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
603 603  |Value|Bat|(% style="width:191px" %)(((
604 604  Temperature(DS18B20)(PC13)
605 605  )))|(% style="width:78px" %)(((
... ... @@ -606,7 +606,6 @@
606 606  ADC(PA4)
607 607  )))|(% style="width:135px" %)(((
608 608  PWM_Setting
609 -
610 610  &Digital Interrupt(PA8)
611 611  )))|(% style="width:70px" %)(((
612 612  Pulse period
... ... @@ -636,9 +636,38 @@
636 636  [[image:image-20230818092200-1.png||height="344" width="627"]]
637 637  
638 638  
639 -===== 2.3.2.10.b  Downlink, PWM output =====
641 +===== 2.3.2.10.b  Uplink, PWM output =====
640 640  
641 641  
644 +[[image:image-20230817172209-2.png||height="439" width="683"]]
645 +
646 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
647 +
648 +a is the time delay of the output, the unit is ms.
649 +
650 +b is the output frequency, the unit is HZ.
651 +
652 +c is the duty cycle of the output, the unit is %.
653 +
654 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
655 +
656 +aa is the time delay of the output, the unit is ms.
657 +
658 +bb is the output frequency, the unit is HZ.
659 +
660 +cc is the duty cycle of the output, the unit is %.
661 +
662 +
663 +For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
664 +
665 +The oscilloscope displays as follows:
666 +
667 +[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
668 +
669 +
670 +===== 2.3.2.10.c  Downlink, PWM output =====
671 +
672 +
642 642  [[image:image-20230817173800-3.png||height="412" width="685"]]
643 643  
644 644  Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
... ... @@ -654,9 +654,37 @@
654 654  
655 655  The oscilloscope displays as follows:
656 656  
657 -[[image:image-20230817173858-5.png||height="694" width="921"]]
688 +[[image:image-20230817173858-5.png||height="634" width="843"]]
658 658  
659 659  
691 +
692 +==== 2.3.2.11  MOD~=11 (TEMP117) ====
693 +
694 +
695 +In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
696 +
697 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
698 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
699 +|Value|Bat|(% style="width:191px" %)(((
700 +Temperature(DS18B20)(PC13)
701 +)))|(% style="width:78px" %)(((
702 +ADC(PA4)
703 +)))|(% style="width:216px" %)(((
704 +Digital in(PB15)&Digital Interrupt(PA8)
705 +)))|(% style="width:308px" %)(((
706 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
707 +)))|(% style="width:154px" %)(((
708 +Humidity(SHT20 or SHT31)
709 +)))
710 +
711 +[[image:image-20240717113113-1.png||height="361" width="814"]]
712 +
713 +
714 +==== 2.3.2.12  MOD~=12 ====
715 +
716 +
717 +
718 +
660 660  === 2.3.3  ​Decode payload ===
661 661  
662 662  
... ... @@ -666,13 +666,13 @@
666 666  
667 667  The payload decoder function for TTN V3 are here:
668 668  
669 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
728 +SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
670 670  
671 671  
672 672  ==== 2.3.3.1 Battery Info ====
673 673  
674 674  
675 -Check the battery voltage for SN50v3-LB.
734 +Check the battery voltage for SN50v3-LB/LS.
676 676  
677 677  Ex1: 0x0B45 = 2885mV
678 678  
... ... @@ -734,10 +734,12 @@
734 734  
735 735  [[image:image-20230811113449-1.png||height="370" width="608"]]
736 736  
796 +
797 +
737 737  ==== 2.3.3.5 Digital Interrupt ====
738 738  
739 739  
740 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
801 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
741 741  
742 742  (% style="color:blue" %)** Interrupt connection method:**
743 743  
... ... @@ -750,18 +750,18 @@
750 750  
751 751  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
752 752  
753 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
814 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
754 754  
755 755  
756 756  (% style="color:blue" %)**Below is the installation example:**
757 757  
758 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
819 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
759 759  
760 760  * (((
761 -One pin to SN50v3-LB's PA8 pin
822 +One pin to SN50v3-LB/LS's PA8 pin
762 762  )))
763 763  * (((
764 -The other pin to SN50v3-LB's VDD pin
825 +The other pin to SN50v3-LB/LS's VDD pin
765 765  )))
766 766  
767 767  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -797,7 +797,7 @@
797 797  
798 798  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
799 799  
800 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
861 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
801 801  
802 802  
803 803  Below is the connection to SHT20/ SHT31. The connection is as below:
... ... @@ -831,7 +831,7 @@
831 831  
832 832  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
833 833  
834 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
895 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
835 835  
836 836  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
837 837  
... ... @@ -840,7 +840,7 @@
840 840  [[image:image-20230512173903-6.png||height="596" width="715"]]
841 841  
842 842  
843 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
904 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
844 844  
845 845  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
846 846  
... ... @@ -852,13 +852,13 @@
852 852  ==== 2.3.3.9  Battery Output - BAT pin ====
853 853  
854 854  
855 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
916 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
856 856  
857 857  
858 858  ==== 2.3.3.10  +5V Output ====
859 859  
860 860  
861 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
922 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
862 862  
863 863  The 5V output time can be controlled by AT Command.
864 864  
... ... @@ -897,9 +897,15 @@
897 897  )))
898 898  * (((
899 899  Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
961 +)))
962 +* (((
963 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
900 900  
965 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
901 901  
902 -
967 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
968 +
969 +b) If the output duration is more than 30 seconds, better to use external power source. 
903 903  )))
904 904  
905 905  ==== 2.3.3.13  Working MOD ====
... ... @@ -922,8 +922,6 @@
922 922  * 8: MOD9
923 923  * 9: MOD10
924 924  
925 -
926 -
927 927  == 2.4 Payload Decoder file ==
928 928  
929 929  
... ... @@ -937,24 +937,22 @@
937 937  == 2.5 Frequency Plans ==
938 938  
939 939  
940 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
1005 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
941 941  
942 942  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
943 943  
944 944  
945 -= 3. Configure SN50v3-LB =
1010 += 3. Configure SN50v3-LB/LS =
946 946  
947 947  == 3.1 Configure Methods ==
948 948  
949 949  
950 -SN50v3-LB supports below configure method:
1015 +SN50v3-LB/LS supports below configure method:
951 951  
952 952  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
953 953  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
954 954  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
955 955  
956 -
957 -
958 958  == 3.2 General Commands ==
959 959  
960 960  
... ... @@ -968,10 +968,10 @@
968 968  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
969 969  
970 970  
971 -== 3.3 Commands special design for SN50v3-LB ==
1034 +== 3.3 Commands special design for SN50v3-LB/LS ==
972 972  
973 973  
974 -These commands only valid for SN50v3-LB, as below:
1037 +These commands only valid for SN50v3-LB/LS, as below:
975 975  
976 976  
977 977  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -982,7 +982,7 @@
982 982  (% style="color:blue" %)**AT Command: AT+TDC**
983 983  
984 984  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
985 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
1048 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
986 986  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
987 987  30000
988 988  OK
... ... @@ -1002,8 +1002,6 @@
1002 1002  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1003 1003  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1004 1004  
1005 -
1006 -
1007 1007  === 3.3.2 Get Device Status ===
1008 1008  
1009 1009  
... ... @@ -1019,10 +1019,10 @@
1019 1019  
1020 1020  Feature, Set Interrupt mode for GPIO_EXIT.
1021 1021  
1022 -(% style="color:blue" %)**AT Command: AT+INTMOD1AT+INTMOD2AT+INTMOD3**
1083 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1023 1023  
1024 1024  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1025 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1086 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1026 1026  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1027 1027  0
1028 1028  OK
... ... @@ -1052,8 +1052,6 @@
1052 1052  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1053 1053  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1054 1054  
1055 -
1056 -
1057 1057  === 3.3.4 Set Power Output Duration ===
1058 1058  
1059 1059  
... ... @@ -1068,7 +1068,7 @@
1068 1068  (% style="color:blue" %)**AT Command: AT+5VT**
1069 1069  
1070 1070  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1071 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1130 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1072 1072  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1073 1073  500(default)
1074 1074  OK
... ... @@ -1086,8 +1086,6 @@
1086 1086  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1087 1087  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1088 1088  
1089 -
1090 -
1091 1091  === 3.3.5 Set Weighing parameters ===
1092 1092  
1093 1093  
... ... @@ -1096,9 +1096,9 @@
1096 1096  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1097 1097  
1098 1098  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1099 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1156 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1100 1100  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1101 -|(% style="width:154px" %)AT+WEIGAP=|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1158 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1102 1102  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1103 1103  
1104 1104  (% style="color:blue" %)**Downlink Command: 0x08**
... ... @@ -1113,8 +1113,6 @@
1113 1113  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1114 1114  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1115 1115  
1116 -
1117 -
1118 1118  === 3.3.6 Set Digital pulse count value ===
1119 1119  
1120 1120  
... ... @@ -1124,8 +1124,8 @@
1124 1124  
1125 1125  (% style="color:blue" %)**AT Command: AT+SETCNT**
1126 1126  
1127 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1128 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1182 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1183 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1129 1129  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1130 1130  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1131 1131  
... ... @@ -1138,8 +1138,6 @@
1138 1138  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1139 1139  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1140 1140  
1141 -
1142 -
1143 1143  === 3.3.7 Set Workmode ===
1144 1144  
1145 1145  
... ... @@ -1147,8 +1147,8 @@
1147 1147  
1148 1148  (% style="color:blue" %)**AT Command: AT+MOD**
1149 1149  
1150 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1151 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1203 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1204 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1152 1152  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1153 1153  OK
1154 1154  )))
... ... @@ -1164,8 +1164,6 @@
1164 1164  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1165 1165  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1166 1166  
1167 -
1168 -
1169 1169  === 3.3.8 PWM setting ===
1170 1170  
1171 1171  
... ... @@ -1173,18 +1173,17 @@
1173 1173  
1174 1174  (% style="color:blue" %)**AT Command: AT+PWMSET**
1175 1175  
1176 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1177 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1178 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1227 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1228 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1229 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1179 1179  0(default)
1180 -
1181 1181  OK
1182 1182  )))
1183 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1233 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1184 1184  OK
1185 1185  
1186 1186  )))
1187 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1237 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1188 1188  
1189 1189  (% style="color:blue" %)**Downlink Command: 0x0C**
1190 1190  
... ... @@ -1193,13 +1193,71 @@
1193 1193  * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1194 1194  * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1195 1195  
1246 +**Feature: Set PWM output time, output frequency and output duty cycle.**
1196 1196  
1248 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1197 1197  
1198 -= 4. Battery & Power Consumption =
1250 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1251 +|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
1252 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1253 +0,0,0(default)
1254 +OK
1255 +)))
1256 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1257 +OK
1258 +
1259 +)))
1260 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1261 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1199 1199  
1263 +
1264 +)))|(% style="width:137px" %)(((
1265 +OK
1266 +)))
1200 1200  
1201 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1268 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1269 +|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters**
1270 +|(% colspan="1" rowspan="3" style="width:155px" %)(((
1271 +AT+PWMOUT=a,b,c
1202 1202  
1273 +
1274 +)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1275 +Set PWM output time, output frequency and output duty cycle.
1276 +
1277 +(((
1278 +
1279 +)))
1280 +
1281 +(((
1282 +
1283 +)))
1284 +)))|(% style="width:242px" %)(((
1285 +a: Output time (unit: seconds)
1286 +The value ranges from 0 to 65535.
1287 +When a=65535, PWM will always output.
1288 +)))
1289 +|(% style="width:242px" %)(((
1290 +b: Output frequency (unit: HZ)
1291 +)))
1292 +|(% style="width:242px" %)(((
1293 +c: Output duty cycle (unit: %)
1294 +The value ranges from 0 to 100.
1295 +)))
1296 +
1297 +(% style="color:blue" %)**Downlink Command: 0x0B01**
1298 +
1299 +Format: Command Code (0x0B01) followed by 6 bytes.
1300 +
1301 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1302 +
1303 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1304 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1305 +
1306 += 4. Battery & Power Cons =
1307 +
1308 +
1309 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1310 +
1203 1203  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1204 1204  
1205 1205  
... ... @@ -1207,7 +1207,7 @@
1207 1207  
1208 1208  
1209 1209  (% class="wikigeneratedid" %)
1210 -**User can change firmware SN50v3-LB to:**
1318 +**User can change firmware SN50v3-LB/LS to:**
1211 1211  
1212 1212  * Change Frequency band/ region.
1213 1213  * Update with new features.
... ... @@ -1220,28 +1220,24 @@
1220 1220  * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1221 1221  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1222 1222  
1223 -
1224 -
1225 1225  = 6. FAQ =
1226 1226  
1227 -== 6.1 Where can i find source code of SN50v3-LB? ==
1333 +== 6.1 Where can i find source code of SN50v3-LB/LS? ==
1228 1228  
1229 1229  
1230 1230  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1231 1231  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1232 1232  
1339 +== 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
1233 1233  
1234 1234  
1235 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1236 -
1237 -
1238 1238  See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1239 1239  
1240 1240  
1241 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1345 +== 6.3 How to put several sensors to a SN50v3-LB/LS? ==
1242 1242  
1243 1243  
1244 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1348 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1245 1245  
1246 1246  [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1247 1247  
... ... @@ -1251,7 +1251,7 @@
1251 1251  = 7. Order Info =
1252 1252  
1253 1253  
1254 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1358 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1255 1255  
1256 1256  (% style="color:red" %)**XX**(%%): The default frequency band
1257 1257  
... ... @@ -1271,14 +1271,12 @@
1271 1271  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1272 1272  * (% style="color:red" %)**NH**(%%): No Hole
1273 1273  
1274 -
1275 -
1276 1276  = 8. ​Packing Info =
1277 1277  
1278 1278  
1279 1279  (% style="color:#037691" %)**Package Includes**:
1280 1280  
1281 -* SN50v3-LB LoRaWAN Generic Node
1383 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1282 1282  
1283 1283  (% style="color:#037691" %)**Dimension and weight**:
1284 1284  
... ... @@ -1287,8 +1287,6 @@
1287 1287  * Package Size / pcs : cm
1288 1288  * Weight / pcs : g
1289 1289  
1290 -
1291 -
1292 1292  = 9. Support =
1293 1293  
1294 1294  
image-20231213102404-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +230.1 KB
Content
image-20240717113113-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +34.0 KB
Content
image-20240717141512-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +948.8 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0