Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 15 removed)
- image-20230610162852-1.png
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
Details
- Page properties
-
- Content
-
... ... @@ -129,7 +129,7 @@ 129 129 == 1.7 Pin Definitions == 130 130 131 131 132 -[[image:image-20230 610163213-1.png||height="404" width="699"]]132 +[[image:image-20230513102034-2.png]] 133 133 134 134 135 135 == 1.8 Mechanical == ... ... @@ -142,7 +142,7 @@ 142 142 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 143 143 144 144 145 -== 1.9Hole Option ==145 +== Hole Option == 146 146 147 147 148 148 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: ... ... @@ -157,7 +157,7 @@ 157 157 == 2.1 How it works == 158 158 159 159 160 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S N50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.160 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 161 161 162 162 163 163 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -165,7 +165,7 @@ 165 165 166 166 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 167 167 168 -The LPS8 v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.168 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 169 169 170 170 171 171 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -214,7 +214,7 @@ 214 214 === 2.3.1 Device Status, FPORT~=5 === 215 215 216 216 217 -Users can use the downlink command(**0x26 01**) to ask SN50v3 -LBto send device configure detail, include device configure status. SN50v3-LBwill uplink a payload via FPort=5 to server.217 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 218 218 219 219 The Payload format is as below. 220 220 ... ... @@ -222,44 +222,44 @@ 222 222 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 223 223 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 224 224 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 225 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 225 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 226 226 227 227 Example parse in TTNv3 228 228 229 229 230 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3 -LB, this value is 0x1C230 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 231 231 232 232 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 233 233 234 234 (% style="color:#037691" %)**Frequency Band**: 235 235 236 -0x01: EU868 236 +*0x01: EU868 237 237 238 -0x02: US915 238 +*0x02: US915 239 239 240 -0x03: IN865 240 +*0x03: IN865 241 241 242 -0x04: AU915 242 +*0x04: AU915 243 243 244 -0x05: KZ865 244 +*0x05: KZ865 245 245 246 -0x06: RU864 246 +*0x06: RU864 247 247 248 -0x07: AS923 248 +*0x07: AS923 249 249 250 -0x08: AS923-1 250 +*0x08: AS923-1 251 251 252 -0x09: AS923-2 252 +*0x09: AS923-2 253 253 254 -0x0a: AS923-3 254 +*0x0a: AS923-3 255 255 256 -0x0b: CN470 256 +*0x0b: CN470 257 257 258 -0x0c: EU433 258 +*0x0c: EU433 259 259 260 -0x0d: KR920 260 +*0x0d: KR920 261 261 262 -0x0e: MA869 262 +*0x0e: MA869 263 263 264 264 265 265 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -283,22 +283,21 @@ 283 283 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 284 284 285 285 286 -SN50v3 -LBhas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command(% style="color:blue" %)**AT+MOD**(%%)to set SN50v3-LBto different working modes.286 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 287 287 288 288 For example: 289 289 290 - (% style="color:blue" %)**AT+MOD=2 **(%%)290 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 291 291 292 292 293 293 (% style="color:red" %) **Important Notice:** 294 294 295 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 295 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 296 +1. All modes share the same Payload Explanation from HERE. 297 +1. By default, the device will send an uplink message every 20 minutes. 296 296 297 -2. All modes share the same Payload Explanation from HERE. 298 298 299 -3. By default, the device will send an uplink message every 20 minutes. 300 300 301 - 302 302 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 303 303 304 304 ... ... @@ -306,7 +306,7 @@ 306 306 307 307 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 308 308 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 309 -|Value|Bat|(% style="width:191px" %)((( 308 +|**Value**|Bat|(% style="width:191px" %)((( 310 310 Temperature(DS18B20)(PC13) 311 311 )))|(% style="width:78px" %)((( 312 312 ADC(PA4) ... ... @@ -321,6 +321,7 @@ 321 321 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 322 322 323 323 323 + 324 324 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 325 325 326 326 ... ... @@ -328,7 +328,7 @@ 328 328 329 329 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 330 330 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 331 -|Value|BAT|(% style="width:196px" %)((( 331 +|**Value**|BAT|(% style="width:196px" %)((( 332 332 Temperature(DS18B20)(PC13) 333 333 )))|(% style="width:87px" %)((( 334 334 ADC(PA4) ... ... @@ -335,8 +335,9 @@ 335 335 )))|(% style="width:189px" %)((( 336 336 Digital in(PB15) & Digital Interrupt(PA8) 337 337 )))|(% style="width:208px" %)((( 338 -Distance measure by: 1) LIDAR-Lite V3HP 339 -Or 2) Ultrasonic Sensor 338 +Distance measure by:1) LIDAR-Lite V3HP 339 +Or 340 +2) Ultrasonic Sensor 340 340 )))|(% style="width:117px" %)Reserved 341 341 342 342 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] ... ... @@ -349,7 +349,7 @@ 349 349 350 350 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 351 351 352 - (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**353 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 353 353 354 354 [[image:image-20230512173903-6.png||height="596" width="715"]] 355 355 ... ... @@ -358,7 +358,7 @@ 358 358 359 359 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 360 360 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 361 -|Value|BAT|(% style="width:183px" %)((( 362 +|**Value**|BAT|(% style="width:183px" %)((( 362 362 Temperature(DS18B20)(PC13) 363 363 )))|(% style="width:173px" %)((( 364 364 Digital in(PB15) & Digital Interrupt(PA8) ... ... @@ -366,7 +366,8 @@ 366 366 ADC(PA4) 367 367 )))|(% style="width:323px" %)((( 368 368 Distance measure by:1)TF-Mini plus LiDAR 369 -Or 2) TF-Luna LiDAR 370 +Or 371 +2) TF-Luna LiDAR 370 370 )))|(% style="width:188px" %)Distance signal strength 371 371 372 372 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] ... ... @@ -374,7 +374,7 @@ 374 374 375 375 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 376 376 377 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**379 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 378 378 379 379 [[image:image-20230512180609-7.png||height="555" width="802"]] 380 380 ... ... @@ -381,9 +381,9 @@ 381 381 382 382 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 383 383 384 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**386 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 385 385 386 -[[image:image-20230 610170047-1.png||height="452" width="799"]]388 +[[image:image-20230513105207-4.png||height="469" width="802"]] 387 387 388 388 389 389 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== ... ... @@ -395,7 +395,7 @@ 395 395 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 396 396 **Size(bytes)** 397 397 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 398 -|Value|(% style="width:68px" %)((( 400 +|**Value**|(% style="width:68px" %)((( 399 399 ADC1(PA4) 400 400 )))|(% style="width:75px" %)((( 401 401 ADC2(PA5) ... ... @@ -419,7 +419,7 @@ 419 419 420 420 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 421 421 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 422 -|Value|BAT|(% style="width:186px" %)((( 424 +|**Value**|BAT|(% style="width:186px" %)((( 423 423 Temperature1(DS18B20)(PC13) 424 424 )))|(% style="width:82px" %)((( 425 425 ADC(PA4) ... ... @@ -430,10 +430,10 @@ 430 430 431 431 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 432 432 433 - 434 434 [[image:image-20230513134006-1.png||height="559" width="736"]] 435 435 436 436 438 + 437 437 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 438 438 439 439 ... ... @@ -441,8 +441,8 @@ 441 441 442 442 Each HX711 need to be calibrated before used. User need to do below two steps: 443 443 444 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%)to calibrate to Zero gram.445 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%)to adjust the Calibration Factor.446 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 447 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 446 446 1. ((( 447 447 Weight has 4 bytes, the unit is g. 448 448 ... ... @@ -452,7 +452,7 @@ 452 452 453 453 For example: 454 454 455 - (% style="color:blue" %)**AT+GETSENSORVALUE =0**457 +**AT+GETSENSORVALUE =0** 456 456 457 457 Response: Weight is 401 g 458 458 ... ... @@ -462,7 +462,7 @@ 462 462 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 463 463 **Size(bytes)** 464 464 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 465 -|Value|BAT|(% style="width:193px" %)((( 467 +|**Value**|BAT|(% style="width:193px" %)((( 466 466 Temperature(DS18B20)(PC13) 467 467 )))|(% style="width:85px" %)((( 468 468 ADC(PA4) ... ... @@ -473,6 +473,7 @@ 473 473 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 474 474 475 475 478 + 476 476 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 477 477 478 478 ... ... @@ -487,7 +487,7 @@ 487 487 488 488 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 489 489 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 490 -|Value|BAT|(% style="width:256px" %)((( 493 +|**Value**|BAT|(% style="width:256px" %)((( 491 491 Temperature(DS18B20)(PC13) 492 492 )))|(% style="width:108px" %)((( 493 493 ADC(PA4) ... ... @@ -500,6 +500,7 @@ 500 500 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 501 501 502 502 506 + 503 503 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 504 504 505 505 ... ... @@ -507,7 +507,7 @@ 507 507 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 508 508 **Size(bytes)** 509 509 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 510 -|Value|BAT|(% style="width:188px" %)((( 514 +|**Value**|BAT|(% style="width:188px" %)((( 511 511 Temperature(DS18B20) 512 512 (PC13) 513 513 )))|(% style="width:83px" %)((( ... ... @@ -526,7 +526,7 @@ 526 526 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 527 527 **Size(bytes)** 528 528 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 529 -|Value|BAT|(% style="width:207px" %)((( 533 +|**Value**|BAT|(% style="width:207px" %)((( 530 530 Temperature(DS18B20) 531 531 (PC13) 532 532 )))|(% style="width:94px" %)((( ... ... @@ -549,7 +549,7 @@ 549 549 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 550 550 **Size(bytes)** 551 551 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 552 -|Value|BAT|((( 556 +|**Value**|BAT|((( 553 553 Temperature 554 554 (DS18B20)(PC13) 555 555 )))|((( ... ... @@ -585,78 +585,6 @@ 585 585 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 586 586 587 587 588 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 589 - 590 - 591 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 592 - 593 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 594 - 595 - 596 -===== 2.3.2.10.a Uplink, PWM input capture ===== 597 - 598 - 599 -[[image:image-20230817172209-2.png||height="439" width="683"]] 600 - 601 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 602 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 603 -|Value|Bat|(% style="width:191px" %)((( 604 -Temperature(DS18B20)(PC13) 605 -)))|(% style="width:78px" %)((( 606 -ADC(PA4) 607 -)))|(% style="width:135px" %)((( 608 -PWM_Setting 609 - 610 -&Digital Interrupt(PA8) 611 -)))|(% style="width:70px" %)((( 612 -Pulse period 613 -)))|(% style="width:89px" %)((( 614 -Duration of high level 615 -))) 616 - 617 -[[image:image-20230817170702-1.png||height="161" width="1044"]] 618 - 619 - 620 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 621 - 622 -**Frequency:** 623 - 624 -(% class="MsoNormal" %) 625 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 626 - 627 -(% class="MsoNormal" %) 628 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 629 - 630 - 631 -(% class="MsoNormal" %) 632 -**Duty cycle:** 633 - 634 -Duty cycle= Duration of high level/ Pulse period*100 ~(%). 635 - 636 -[[image:image-20230818092200-1.png||height="344" width="627"]] 637 - 638 - 639 -===== 2.3.2.10.b Downlink, PWM output ===== 640 - 641 - 642 -[[image:image-20230817173800-3.png||height="412" width="685"]] 643 - 644 -Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 645 - 646 - xx xx xx is the output frequency, the unit is HZ. 647 - 648 - yy is the duty cycle of the output, the unit is %. 649 - 650 - zz zz is the time delay of the output, the unit is ms. 651 - 652 - 653 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 654 - 655 -The oscilloscope displays as follows: 656 - 657 -[[image:image-20230817173858-5.png||height="694" width="921"]] 658 - 659 - 660 660 === 2.3.3 Decode payload === 661 661 662 662 ... ... @@ -666,13 +666,13 @@ 666 666 667 667 The payload decoder function for TTN V3 are here: 668 668 669 -SN50v3 -LBTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]601 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 670 670 671 671 672 672 ==== 2.3.3.1 Battery Info ==== 673 673 674 674 675 -Check the battery voltage for SN50v3 -LB.607 +Check the battery voltage for SN50v3. 676 676 677 677 Ex1: 0x0B45 = 2885mV 678 678 ... ... @@ -720,24 +720,19 @@ 720 720 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 721 721 722 722 723 -The measuring range of the ADC is only about 0 .1V to 1.1V The voltage resolution is about 0.24mv.655 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 724 724 725 -When the measured output voltage of the sensor is not within the range of 0 .1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.657 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 726 726 727 727 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 728 728 729 - 730 730 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 731 731 732 732 733 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 734 - 735 -[[image:image-20230811113449-1.png||height="370" width="608"]] 736 - 737 737 ==== 2.3.3.5 Digital Interrupt ==== 738 738 739 739 740 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 -LBwill send a packet to the server.667 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 741 741 742 742 (% style="color:blue" %)** Interrupt connection method:** 743 743 ... ... @@ -750,18 +750,18 @@ 750 750 751 751 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 752 752 753 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3 -LBinterrupt interface to detect the status for the door or window.680 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 754 754 755 755 756 756 (% style="color:blue" %)**Below is the installation example:** 757 757 758 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3 -LBas follows:685 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 759 759 760 760 * ((( 761 -One pin to SN50v3 -LB's PA8 pin688 +One pin to SN50_v3's PA8 pin 762 762 ))) 763 763 * ((( 764 -The other pin to SN50v3 -LB's VDD pin691 +The other pin to SN50_v3's VDD pin 765 765 ))) 766 766 767 767 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -778,7 +778,7 @@ 778 778 779 779 The command is: 780 780 781 -(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ 708 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 782 782 783 783 Below shows some screen captures in TTN V3: 784 784 ... ... @@ -785,7 +785,7 @@ 785 785 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 786 786 787 787 788 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:715 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 789 789 790 790 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 791 791 ... ... @@ -797,13 +797,12 @@ 797 797 798 798 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 799 799 800 - (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LBwill be a good reference.**727 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference. 801 801 802 - 803 803 Below is the connection to SHT20/ SHT31. The connection is as below: 804 804 805 -[[image:image-20230610170152-2.png||height="501" width="846"]] 806 806 732 +[[image:image-20230513103633-3.png||height="448" width="716"]] 807 807 808 808 The device will be able to get the I2C sensor data now and upload to IoT Server. 809 809 ... ... @@ -831,7 +831,7 @@ 831 831 832 832 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 833 833 834 -The SN50v3 -LBdetects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.760 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 835 835 836 836 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 837 837 ... ... @@ -840,7 +840,7 @@ 840 840 [[image:image-20230512173903-6.png||height="596" width="715"]] 841 841 842 842 843 -Connect to the SN50v3 -LBand run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).769 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 844 844 845 845 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 846 846 ... ... @@ -852,13 +852,13 @@ 852 852 ==== 2.3.3.9 Battery Output - BAT pin ==== 853 853 854 854 855 -The BAT pin of SN50v3 -LBis connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.781 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 856 856 857 857 858 858 ==== 2.3.3.10 +5V Output ==== 859 859 860 860 861 -SN50v3 -LBwill enable +5V output before all sampling and disable the +5v after all sampling.787 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 862 862 863 863 The 5V output time can be controlled by AT Command. 864 864 ... ... @@ -866,7 +866,7 @@ 866 866 867 867 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 868 868 869 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.795 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 870 870 871 871 872 872 ==== 2.3.3.11 BH1750 Illumination Sensor ==== ... ... @@ -880,31 +880,9 @@ 880 880 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 881 881 882 882 883 -==== 2.3.3.12 PWMMOD ====809 +==== 2.3.3.12 Working MOD ==== 884 884 885 885 886 -* ((( 887 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 888 -))) 889 -* ((( 890 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 891 -))) 892 - 893 - [[image:image-20230817183249-3.png||height="320" width="417"]] 894 - 895 -* ((( 896 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 897 -))) 898 -* ((( 899 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 900 - 901 - 902 - 903 -))) 904 - 905 -==== 2.3.3.13 Working MOD ==== 906 - 907 - 908 908 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 909 909 910 910 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -920,10 +920,8 @@ 920 920 * 6: MOD7 921 921 * 7: MOD8 922 922 * 8: MOD9 923 -* 9: MOD10 924 924 925 925 926 - 927 927 == 2.4 Payload Decoder file == 928 928 929 929 ... ... @@ -954,7 +954,6 @@ 954 954 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 955 955 956 956 957 - 958 958 == 3.2 General Commands == 959 959 960 960 ... ... @@ -971,7 +971,7 @@ 971 971 == 3.3 Commands special design for SN50v3-LB == 972 972 973 973 974 -These commands only valid for S N50v3-LB, as below:875 +These commands only valid for S31x-LB, as below: 975 975 976 976 977 977 === 3.3.1 Set Transmit Interval Time === ... ... @@ -982,7 +982,7 @@ 982 982 (% style="color:blue" %)**AT Command: AT+TDC** 983 983 984 984 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 985 -|=(% style="width: 156px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**886 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 986 986 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 987 987 30000 988 988 OK ... ... @@ -1003,15 +1003,14 @@ 1003 1003 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 1004 1004 1005 1005 1006 - 1007 1007 === 3.3.2 Get Device Status === 1008 1008 1009 1009 1010 1010 Send a LoRaWAN downlink to ask the device to send its status. 1011 1011 1012 -(% style="color:blue" %)**Downlink Payload: 0x26 01 **912 +(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 1013 1013 1014 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.914 +Sensor will upload Device Status via FPORT=5. See payload section for detail. 1015 1015 1016 1016 1017 1017 === 3.3.3 Set Interrupt Mode === ... ... @@ -1022,7 +1022,7 @@ 1022 1022 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 1023 1023 1024 1024 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1025 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**925 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1026 1026 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1027 1027 0 1028 1028 OK ... ... @@ -1053,7 +1053,6 @@ 1053 1053 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 1054 1054 1055 1055 1056 - 1057 1057 === 3.3.4 Set Power Output Duration === 1058 1058 1059 1059 ... ... @@ -1068,7 +1068,7 @@ 1068 1068 (% style="color:blue" %)**AT Command: AT+5VT** 1069 1069 1070 1070 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1071 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**970 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1072 1072 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1073 1073 500(default) 1074 1074 OK ... ... @@ -1087,7 +1087,6 @@ 1087 1087 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1088 1088 1089 1089 1090 - 1091 1091 === 3.3.5 Set Weighing parameters === 1092 1092 1093 1093 ... ... @@ -1096,7 +1096,7 @@ 1096 1096 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1097 1097 1098 1098 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1099 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**997 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1100 1100 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1101 1101 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1102 1102 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -1114,7 +1114,6 @@ 1114 1114 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1115 1115 1116 1116 1117 - 1118 1118 === 3.3.6 Set Digital pulse count value === 1119 1119 1120 1120 ... ... @@ -1125,7 +1125,7 @@ 1125 1125 (% style="color:blue" %)**AT Command: AT+SETCNT** 1126 1126 1127 1127 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1128 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1025 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1129 1129 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1130 1130 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1131 1131 ... ... @@ -1139,7 +1139,6 @@ 1139 1139 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1140 1140 1141 1141 1142 - 1143 1143 === 3.3.7 Set Workmode === 1144 1144 1145 1145 ... ... @@ -1148,7 +1148,7 @@ 1148 1148 (% style="color:blue" %)**AT Command: AT+MOD** 1149 1149 1150 1150 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1151 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1047 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1152 1152 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1153 1153 OK 1154 1154 ))) ... ... @@ -1165,36 +1165,6 @@ 1165 1165 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1166 1166 1167 1167 1168 - 1169 -=== 3.3.8 PWM setting === 1170 - 1171 - 1172 -Feature: Set the time acquisition unit for PWM input capture. 1173 - 1174 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1175 - 1176 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1177 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1178 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1179 -0(default) 1180 - 1181 -OK 1182 -))) 1183 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)((( 1184 -OK 1185 - 1186 -))) 1187 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK 1188 - 1189 -(% style="color:blue" %)**Downlink Command: 0x0C** 1190 - 1191 -Format: Command Code (0x0C) followed by 1 bytes. 1192 - 1193 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1194 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1195 - 1196 - 1197 - 1198 1198 = 4. Battery & Power Consumption = 1199 1199 1200 1200 ... ... @@ -1207,19 +1207,19 @@ 1207 1207 1208 1208 1209 1209 (% class="wikigeneratedid" %) 1210 - **User can change firmware SN50v3-LB to:**1076 +User can change firmware SN50v3-LB to: 1211 1211 1212 1212 * Change Frequency band/ region. 1213 1213 * Update with new features. 1214 1214 * Fix bugs. 1215 1215 1216 - **Firmware and changelog can be downloaded from :****[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**1082 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1217 1217 1218 -**Methods to Update Firmware:** 1219 1219 1220 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1221 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1085 +Methods to Update Firmware: 1222 1222 1087 +* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1088 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1223 1223 1224 1224 1225 1225 = 6. FAQ = ... ... @@ -1231,23 +1231,6 @@ 1231 1231 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1232 1232 1233 1233 1234 - 1235 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1236 - 1237 - 1238 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1239 - 1240 - 1241 -== 6.3 How to put several sensors to a SN50v3-LB? == 1242 - 1243 - 1244 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1245 - 1246 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1247 - 1248 -[[image:image-20230810121434-1.png||height="242" width="656"]] 1249 - 1250 - 1251 1251 = 7. Order Info = 1252 1252 1253 1253 ... ... @@ -1272,7 +1272,6 @@ 1272 1272 * (% style="color:red" %)**NH**(%%): No Hole 1273 1273 1274 1274 1275 - 1276 1276 = 8. Packing Info = 1277 1277 1278 1278 ... ... @@ -1288,7 +1288,6 @@ 1288 1288 * Weight / pcs : g 1289 1289 1290 1290 1291 - 1292 1292 = 9. Support = 1293 1293 1294 1294
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.9 KB - Content