<
From version < 74.4 >
edited by Xiaoling
on 2023/08/19 15:45
To version < 87.30 >
edited by Xiaoling
on 2024/01/15 09:30
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Content
... ... @@ -1,10 +1,15 @@
1 +
2 +
1 1  (% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
4 +[[image:image-20240103095714-2.png]]
3 3  
4 4  
5 5  
6 -**Table of Contents:**
7 7  
9 +
10 +
11 +**Table of Contents:**
12 +
8 8  {{toc/}}
9 9  
10 10  
... ... @@ -14,20 +14,19 @@
14 14  
15 15  = 1. Introduction =
16 16  
17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
18 18  
19 19  
20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
24 -(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
25 25  
26 -(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
27 27  
28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 -
31 31  == 1.2 ​Features ==
32 32  
33 33  
... ... @@ -39,7 +39,8 @@
39 39  * Support wireless OTA update firmware
40 40  * Uplink on periodically
41 41  * Downlink to change configure
42 -* 8500mAh Battery for long term use
46 +* 8500mAh Li/SOCl2 Battery (SN50v3-LB)
47 +* Solar panel + 3000mAh Li-on battery (SN50v3-LS)
43 43  
44 44  == 1.3 Specification ==
45 45  
... ... @@ -46,7 +46,7 @@
46 46  
47 47  (% style="color:#037691" %)**Common DC Characteristics:**
48 48  
49 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
54 +* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
50 50  * Operating Temperature: -40 ~~ 85°C
51 51  
52 52  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -89,11 +89,10 @@
89 89  == 1.5 Button & LEDs ==
90 90  
91 91  
92 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
97 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
93 93  
94 -
95 95  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
96 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
100 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
97 97  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
98 98  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
99 99  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -108,7 +108,7 @@
108 108  == 1.6 BLE connection ==
109 109  
110 110  
111 -SN50v3-LB supports BLE remote configure.
115 +SN50v3-LB/LS supports BLE remote configure.
112 112  
113 113  
114 114  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -128,18 +128,23 @@
128 128  
129 129  == 1.8 Mechanical ==
130 130  
135 +=== 1.8.1 for LB version ===
131 131  
132 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
133 133  
134 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
138 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
135 135  
140 +
136 136  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
137 137  
143 +=== 1.8.2 for LS version ===
138 138  
145 +[[image:image-20231231203439-3.png||height="385" width="886"]]
146 +
147 +
139 139  == 1.9 Hole Option ==
140 140  
141 141  
142 -SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
151 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
143 143  
144 144  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
145 145  
... ... @@ -146,12 +146,12 @@
146 146  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
147 147  
148 148  
149 -= 2. Configure SN50v3-LB to connect to LoRaWAN network =
158 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
150 150  
151 151  == 2.1 How it works ==
152 152  
153 153  
154 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
163 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
155 155  
156 156  
157 157  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -162,9 +162,9 @@
162 162  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
163 163  
164 164  
165 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
174 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
166 166  
167 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
176 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
168 168  
169 169  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
170 170  
... ... @@ -193,10 +193,10 @@
193 193  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
194 194  
195 195  
196 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
205 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
197 197  
198 198  
199 -Press the button for 5 seconds to activate the SN50v3-LB.
208 +Press the button for 5 seconds to activate the SN50v3-LB/LS.
200 200  
201 201  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
202 202  
... ... @@ -208,13 +208,13 @@
208 208  === 2.3.1 Device Status, FPORT~=5 ===
209 209  
210 210  
211 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
220 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
212 212  
213 213  The Payload format is as below.
214 214  
215 215  
216 216  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
217 -|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
226 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
218 218  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
219 219  |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
220 220  
... ... @@ -221,7 +221,7 @@
221 221  Example parse in TTNv3
222 222  
223 223  
224 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
233 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
225 225  
226 226  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
227 227  
... ... @@ -277,7 +277,7 @@
277 277  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
278 278  
279 279  
280 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
289 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
281 281  
282 282  For example:
283 283  
... ... @@ -286,7 +286,7 @@
286 286  
287 287  (% style="color:red" %) **Important Notice:**
288 288  
289 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
298 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
290 290  
291 291  2. All modes share the same Payload Explanation from HERE.
292 292  
... ... @@ -299,7 +299,7 @@
299 299  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
300 300  
301 301  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
302 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
311 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**2**|(% style="background-color:#4f81bd; color:white; width:80px" %)**2**
303 303  |Value|Bat|(% style="width:191px" %)(((
304 304  Temperature(DS18B20)(PC13)
305 305  )))|(% style="width:78px" %)(((
... ... @@ -321,7 +321,7 @@
321 321  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
322 322  
323 323  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
324 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
333 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
325 325  |Value|BAT|(% style="width:196px" %)(((
326 326  Temperature(DS18B20)(PC13)
327 327  )))|(% style="width:87px" %)(((
... ... @@ -351,7 +351,7 @@
351 351  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
352 352  
353 353  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
354 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
363 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:80px" %)**2**
355 355  |Value|BAT|(% style="width:183px" %)(((
356 356  Temperature(DS18B20)(PC13)
357 357  )))|(% style="width:173px" %)(((
... ... @@ -386,9 +386,9 @@
386 386  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
387 387  
388 388  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
389 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
398 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
390 390  **Size(bytes)**
391 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
400 +)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 100px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
392 392  |Value|(% style="width:68px" %)(((
393 393  ADC1(PA4)
394 394  )))|(% style="width:75px" %)(((
... ... @@ -412,7 +412,7 @@
412 412  This mode has total 11 bytes. As shown below:
413 413  
414 414  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
415 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
424 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**
416 416  |Value|BAT|(% style="width:186px" %)(((
417 417  Temperature1(DS18B20)(PC13)
418 418  )))|(% style="width:82px" %)(((
... ... @@ -453,9 +453,9 @@
453 453  Check the response of this command and adjust the value to match the real value for thing.
454 454  
455 455  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
456 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
465 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
457 457  **Size(bytes)**
458 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
467 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4**
459 459  |Value|BAT|(% style="width:193px" %)(((
460 460  Temperature(DS18B20)(PC13)
461 461  )))|(% style="width:85px" %)(((
... ... @@ -480,7 +480,7 @@
480 480  (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
481 481  
482 482  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
483 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
492 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**4**
484 484  |Value|BAT|(% style="width:256px" %)(((
485 485  Temperature(DS18B20)(PC13)
486 486  )))|(% style="width:108px" %)(((
... ... @@ -498,9 +498,9 @@
498 498  
499 499  
500 500  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
501 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
510 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
502 502  **Size(bytes)**
503 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
512 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
504 504  |Value|BAT|(% style="width:188px" %)(((
505 505  Temperature(DS18B20)
506 506  (PC13)
... ... @@ -517,9 +517,9 @@
517 517  
518 518  
519 519  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
520 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
529 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
521 521  **Size(bytes)**
522 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
531 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 120px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)2
523 523  |Value|BAT|(% style="width:207px" %)(((
524 524  Temperature(DS18B20)
525 525  (PC13)
... ... @@ -540,9 +540,9 @@
540 540  
541 541  
542 542  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
543 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
552 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
544 544  **Size(bytes)**
545 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
554 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4
546 546  |Value|BAT|(((
547 547  Temperature
548 548  (DS18B20)(PC13)
... ... @@ -579,9 +579,11 @@
579 579  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
580 580  
581 581  
582 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
591 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
583 583  
584 584  
594 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
595 +
585 585  In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
586 586  
587 587  [[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
... ... @@ -592,8 +592,8 @@
592 592  
593 593  [[image:image-20230817172209-2.png||height="439" width="683"]]
594 594  
595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
596 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
606 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
607 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
597 597  |Value|Bat|(% style="width:191px" %)(((
598 598  Temperature(DS18B20)(PC13)
599 599  )))|(% style="width:78px" %)(((
... ... @@ -600,7 +600,6 @@
600 600  ADC(PA4)
601 601  )))|(% style="width:135px" %)(((
602 602  PWM_Setting
603 -
604 604  &Digital Interrupt(PA8)
605 605  )))|(% style="width:70px" %)(((
606 606  Pulse period
... ... @@ -630,9 +630,38 @@
630 630  [[image:image-20230818092200-1.png||height="344" width="627"]]
631 631  
632 632  
633 -===== 2.3.2.10.b  Downlink, PWM output =====
643 +===== 2.3.2.10.b  Uplink, PWM output =====
634 634  
635 635  
646 +[[image:image-20230817172209-2.png||height="439" width="683"]]
647 +
648 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
649 +
650 +a is the time delay of the output, the unit is ms.
651 +
652 +b is the output frequency, the unit is HZ.
653 +
654 +c is the duty cycle of the output, the unit is %.
655 +
656 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
657 +
658 +aa is the time delay of the output, the unit is ms.
659 +
660 +bb is the output frequency, the unit is HZ.
661 +
662 +cc is the duty cycle of the output, the unit is %.
663 +
664 +
665 +For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
666 +
667 +The oscilloscope displays as follows:
668 +
669 +[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
670 +
671 +
672 +===== 2.3.2.10.c  Downlink, PWM output =====
673 +
674 +
636 636  [[image:image-20230817173800-3.png||height="412" width="685"]]
637 637  
638 638  Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
... ... @@ -648,7 +648,7 @@
648 648  
649 649  The oscilloscope displays as follows:
650 650  
651 -[[image:image-20230817173858-5.png||height="694" width="921"]]
690 +[[image:image-20230817173858-5.png||height="634" width="843"]]
652 652  
653 653  
654 654  === 2.3.3  ​Decode payload ===
... ... @@ -660,13 +660,13 @@
660 660  
661 661  The payload decoder function for TTN V3 are here:
662 662  
663 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
702 +SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
664 664  
665 665  
666 666  ==== 2.3.3.1 Battery Info ====
667 667  
668 668  
669 -Check the battery voltage for SN50v3-LB.
708 +Check the battery voltage for SN50v3-LB/LS.
670 670  
671 671  Ex1: 0x0B45 = 2885mV
672 672  
... ... @@ -728,10 +728,12 @@
728 728  
729 729  [[image:image-20230811113449-1.png||height="370" width="608"]]
730 730  
770 +
771 +
731 731  ==== 2.3.3.5 Digital Interrupt ====
732 732  
733 733  
734 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
775 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
735 735  
736 736  (% style="color:blue" %)** Interrupt connection method:**
737 737  
... ... @@ -744,18 +744,18 @@
744 744  
745 745  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
746 746  
747 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
788 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
748 748  
749 749  
750 750  (% style="color:blue" %)**Below is the installation example:**
751 751  
752 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
793 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
753 753  
754 754  * (((
755 -One pin to SN50v3-LB's PA8 pin
796 +One pin to SN50v3-LB/LS's PA8 pin
756 756  )))
757 757  * (((
758 -The other pin to SN50v3-LB's VDD pin
799 +The other pin to SN50v3-LB/LS's VDD pin
759 759  )))
760 760  
761 761  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -791,7 +791,7 @@
791 791  
792 792  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
793 793  
794 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
835 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
795 795  
796 796  
797 797  Below is the connection to SHT20/ SHT31. The connection is as below:
... ... @@ -825,7 +825,7 @@
825 825  
826 826  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
827 827  
828 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
869 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
829 829  
830 830  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
831 831  
... ... @@ -834,7 +834,7 @@
834 834  [[image:image-20230512173903-6.png||height="596" width="715"]]
835 835  
836 836  
837 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
878 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
838 838  
839 839  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
840 840  
... ... @@ -846,13 +846,13 @@
846 846  ==== 2.3.3.9  Battery Output - BAT pin ====
847 847  
848 848  
849 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
890 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
850 850  
851 851  
852 852  ==== 2.3.3.10  +5V Output ====
853 853  
854 854  
855 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
896 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
856 856  
857 857  The 5V output time can be controlled by AT Command.
858 858  
... ... @@ -891,8 +891,15 @@
891 891  )))
892 892  * (((
893 893  Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
935 +)))
936 +* (((
937 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
894 894  
895 -
939 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
940 +
941 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
942 +
943 +b) If the output duration is more than 30 seconds, better to use external power source. 
896 896  )))
897 897  
898 898  ==== 2.3.3.13  Working MOD ====
... ... @@ -928,17 +928,17 @@
928 928  == 2.5 Frequency Plans ==
929 929  
930 930  
931 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
979 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
932 932  
933 933  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
934 934  
935 935  
936 -= 3. Configure SN50v3-LB =
984 += 3. Configure SN50v3-LB/LS =
937 937  
938 938  == 3.1 Configure Methods ==
939 939  
940 940  
941 -SN50v3-LB supports below configure method:
989 +SN50v3-LB/LS supports below configure method:
942 942  
943 943  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
944 944  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -957,10 +957,10 @@
957 957  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
958 958  
959 959  
960 -== 3.3 Commands special design for SN50v3-LB ==
1008 +== 3.3 Commands special design for SN50v3-LB/LS ==
961 961  
962 962  
963 -These commands only valid for SN50v3-LB, as below:
1011 +These commands only valid for SN50v3-LB/LS, as below:
964 964  
965 965  
966 966  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -971,7 +971,7 @@
971 971  (% style="color:blue" %)**AT Command: AT+TDC**
972 972  
973 973  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
974 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
1022 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
975 975  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
976 976  30000
977 977  OK
... ... @@ -1006,10 +1006,10 @@
1006 1006  
1007 1007  Feature, Set Interrupt mode for GPIO_EXIT.
1008 1008  
1009 -(% style="color:blue" %)**AT Command: AT+INTMOD1AT+INTMOD2AT+INTMOD3**
1057 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1010 1010  
1011 1011  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1012 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1060 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1013 1013  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1014 1014  0
1015 1015  OK
... ... @@ -1053,7 +1053,7 @@
1053 1053  (% style="color:blue" %)**AT Command: AT+5VT**
1054 1054  
1055 1055  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1056 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1104 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1057 1057  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1058 1058  500(default)
1059 1059  OK
... ... @@ -1079,9 +1079,9 @@
1079 1079  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1080 1080  
1081 1081  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1082 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1130 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1083 1083  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1084 -|(% style="width:154px" %)AT+WEIGAP=|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1132 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1085 1085  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1086 1086  
1087 1087  (% style="color:blue" %)**Downlink Command: 0x08**
... ... @@ -1106,7 +1106,7 @@
1106 1106  (% style="color:blue" %)**AT Command: AT+SETCNT**
1107 1107  
1108 1108  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1109 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1157 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1110 1110  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1111 1111  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1112 1112  
... ... @@ -1127,7 +1127,7 @@
1127 1127  (% style="color:blue" %)**AT Command: AT+MOD**
1128 1128  
1129 1129  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1130 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1178 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1131 1131  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1132 1132  OK
1133 1133  )))
... ... @@ -1145,22 +1145,22 @@
1145 1145  
1146 1146  === 3.3.8 PWM setting ===
1147 1147  
1196 +
1148 1148  Feature: Set the time acquisition unit for PWM input capture.
1149 1149  
1150 1150  (% style="color:blue" %)**AT Command: AT+PWMSET**
1151 1151  
1152 1152  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1153 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1154 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1202 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1203 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1155 1155  0(default)
1156 -
1157 1157  OK
1158 1158  )))
1159 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1207 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1160 1160  OK
1161 1161  
1162 1162  )))
1163 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1211 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1164 1164  
1165 1165  (% style="color:blue" %)**Downlink Command: 0x0C**
1166 1166  
... ... @@ -1169,11 +1169,71 @@
1169 1169  * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1170 1170  * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1171 1171  
1172 -= 4. Battery & Power Consumption =
1220 +**Feature: Set PWM output time, output frequency and output duty cycle.**
1173 1173  
1222 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1174 1174  
1175 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1224 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1225 +|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
1226 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1227 +0,0,0(default)
1228 +OK
1229 +)))
1230 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1231 +OK
1232 +
1233 +)))
1234 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1235 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1176 1176  
1237 +
1238 +)))|(% style="width:137px" %)(((
1239 +OK
1240 +)))
1241 +
1242 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1243 +|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters**
1244 +|(% colspan="1" rowspan="3" style="width:155px" %)(((
1245 +AT+PWMOUT=a,b,c
1246 +
1247 +
1248 +)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1249 +Set PWM output time, output frequency and output duty cycle.
1250 +
1251 +(((
1252 +
1253 +)))
1254 +
1255 +(((
1256 +
1257 +)))
1258 +)))|(% style="width:242px" %)(((
1259 +a: Output time (unit: seconds)
1260 +The value ranges from 0 to 65535.
1261 +When a=65535, PWM will always output.
1262 +)))
1263 +|(% style="width:242px" %)(((
1264 +b: Output frequency (unit: HZ)
1265 +)))
1266 +|(% style="width:242px" %)(((
1267 +c: Output duty cycle (unit: %)
1268 +The value ranges from 0 to 100.
1269 +)))
1270 +
1271 +(% style="color:blue" %)**Downlink Command: 0x0B01**
1272 +
1273 +Format: Command Code (0x0B01) followed by 6 bytes.
1274 +
1275 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1276 +
1277 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1278 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1279 +
1280 += 4. Battery & Power Cons =
1281 +
1282 +
1283 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1284 +
1177 1177  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1178 1178  
1179 1179  
... ... @@ -1181,7 +1181,7 @@
1181 1181  
1182 1182  
1183 1183  (% class="wikigeneratedid" %)
1184 -**User can change firmware SN50v3-LB to:**
1292 +**User can change firmware SN50v3-LB/LS to:**
1185 1185  
1186 1186  * Change Frequency band/ region.
1187 1187  * Update with new features.
... ... @@ -1196,22 +1196,22 @@
1196 1196  
1197 1197  = 6. FAQ =
1198 1198  
1199 -== 6.1 Where can i find source code of SN50v3-LB? ==
1307 +== 6.1 Where can i find source code of SN50v3-LB/LS? ==
1200 1200  
1201 1201  
1202 1202  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1203 1203  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1204 1204  
1205 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1313 +== 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
1206 1206  
1207 1207  
1208 1208  See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1209 1209  
1210 1210  
1211 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1319 +== 6.3 How to put several sensors to a SN50v3-LB/LS? ==
1212 1212  
1213 1213  
1214 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1322 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1215 1215  
1216 1216  [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1217 1217  
... ... @@ -1221,7 +1221,7 @@
1221 1221  = 7. Order Info =
1222 1222  
1223 1223  
1224 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1332 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1225 1225  
1226 1226  (% style="color:red" %)**XX**(%%): The default frequency band
1227 1227  
... ... @@ -1246,7 +1246,7 @@
1246 1246  
1247 1247  (% style="color:#037691" %)**Package Includes**:
1248 1248  
1249 -* SN50v3-LB LoRaWAN Generic Node
1357 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1250 1250  
1251 1251  (% style="color:#037691" %)**Dimension and weight**:
1252 1252  
image-20231213102404-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +230.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0