Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 6 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor Node User Manual 1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual - Content
-
... ... @@ -1,10 +1,15 @@ 1 + 2 + 1 1 (% style="text-align:center" %) 2 -[[image:image-202 30515135611-1.jpeg||height="589" width="589"]]4 +[[image:image-20240103095714-2.png]] 3 3 4 4 5 5 6 -**Table of Contents:** 7 7 9 + 10 + 11 +**Table of Contents:** 12 + 8 8 {{toc/}} 9 9 10 10 ... ... @@ -14,20 +14,19 @@ 14 14 15 15 = 1. Introduction = 16 16 17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node == 22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node == 18 18 19 19 20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%) or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphonedetection,building automation, andso on.27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 23 23 24 -(% style="color:blue" %)** SN50V3-LB **(%%)has a powerful48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors. 25 25 26 -(% style="color:blue" %)** SN50V3-LB**(%%) has abuilt-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining. 27 27 28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 - 31 31 == 1.2 Features == 32 32 33 33 ... ... @@ -39,7 +39,8 @@ 39 39 * Support wireless OTA update firmware 40 40 * Uplink on periodically 41 41 * Downlink to change configure 42 -* 8500mAh Battery for long term use 46 +* 8500mAh Li/SOCl2 battery (SN50v3-LB) 47 +* Solar panel + 3000mAh Li-on battery (SN50v3-LS) 43 43 44 44 == 1.3 Specification == 45 45 ... ... @@ -46,7 +46,7 @@ 46 46 47 47 (% style="color:#037691" %)**Common DC Characteristics:** 48 48 49 -* Supply Voltage: built in8500mAh Li-SOCI2battery , 2.5v ~~ 3.6v54 +* Supply Voltage: Built- in battery , 2.5v ~~ 3.6v 50 50 * Operating Temperature: -40 ~~ 85°C 51 51 52 52 (% style="color:#037691" %)**I/O Interface:** ... ... @@ -89,11 +89,11 @@ 89 89 == 1.5 Button & LEDs == 90 90 91 91 92 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 97 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]] 93 93 94 94 95 95 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 96 -|=(% style="width: 167px;background-color:# D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**101 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 97 97 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 98 98 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 99 99 Meanwhile, BLE module will be active and user can connect via BLE to configure device. ... ... @@ -108,7 +108,7 @@ 108 108 == 1.6 BLE connection == 109 109 110 110 111 -SN50v3-LB supports BLE remote configure. 116 +SN50v3-LB/LS supports BLE remote configure. 112 112 113 113 114 114 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: ... ... @@ -128,18 +128,23 @@ 128 128 129 129 == 1.8 Mechanical == 130 130 136 +=== 1.8.1 for LB version === 131 131 132 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 133 133 134 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 139 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 135 135 141 + 136 136 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 137 137 144 +=== 1.8.2 for LS version === 138 138 146 +[[image:image-20231231203439-3.png||height="385" width="886"]] 147 + 148 + 139 139 == 1.9 Hole Option == 140 140 141 141 142 -SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 152 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 143 143 144 144 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] 145 145 ... ... @@ -146,12 +146,12 @@ 146 146 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]] 147 147 148 148 149 -= 2. Configure SN50v3-LB to connect to LoRaWAN network = 159 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network = 150 150 151 151 == 2.1 How it works == 152 152 153 153 154 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 164 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 155 155 156 156 157 157 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -162,9 +162,9 @@ 162 162 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 163 163 164 164 165 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. 175 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS. 166 166 167 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below: 177 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below: 168 168 169 169 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]] 170 170 ... ... @@ -193,10 +193,10 @@ 193 193 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 194 194 195 195 196 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB 206 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS 197 197 198 198 199 -Press the button for 5 seconds to activate the SN50v3-LB. 209 +Press the button for 5 seconds to activate the SN50v3-LB/LS. 200 200 201 201 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 202 202 ... ... @@ -208,7 +208,7 @@ 208 208 === 2.3.1 Device Status, FPORT~=5 === 209 209 210 210 211 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 221 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server. 212 212 213 213 The Payload format is as below. 214 214 ... ... @@ -221,7 +221,7 @@ 221 221 Example parse in TTNv3 222 222 223 223 224 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 234 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C 225 225 226 226 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 227 227 ... ... @@ -277,7 +277,7 @@ 277 277 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 278 278 279 279 280 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 290 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes. 281 281 282 282 For example: 283 283 ... ... @@ -286,7 +286,7 @@ 286 286 287 287 (% style="color:red" %) **Important Notice:** 288 288 289 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 299 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload. 290 290 291 291 2. All modes share the same Payload Explanation from HERE. 292 292 ... ... @@ -386,9 +386,9 @@ 386 386 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 387 387 388 388 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 389 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((399 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 390 390 **Size(bytes)** 391 -)))|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1401 +)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 100px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1 392 392 |Value|(% style="width:68px" %)((( 393 393 ADC1(PA4) 394 394 )))|(% style="width:75px" %)((( ... ... @@ -453,9 +453,9 @@ 453 453 Check the response of this command and adjust the value to match the real value for thing. 454 454 455 455 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 456 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((466 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 457 457 **Size(bytes)** 458 -)))|=(% style="width: 20px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**468 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4** 459 459 |Value|BAT|(% style="width:193px" %)((( 460 460 Temperature(DS18B20)(PC13) 461 461 )))|(% style="width:85px" %)((( ... ... @@ -480,7 +480,7 @@ 480 480 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 481 481 482 482 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 483 -|=(% style="width: 60px;background-color:# D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**493 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**4** 484 484 |Value|BAT|(% style="width:256px" %)((( 485 485 Temperature(DS18B20)(PC13) 486 486 )))|(% style="width:108px" %)((( ... ... @@ -498,9 +498,9 @@ 498 498 499 499 500 500 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 501 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((511 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 502 502 **Size(bytes)** 503 -)))|=(% style="width: 20px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2513 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2 504 504 |Value|BAT|(% style="width:188px" %)((( 505 505 Temperature(DS18B20) 506 506 (PC13) ... ... @@ -517,9 +517,9 @@ 517 517 518 518 519 519 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 520 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((530 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 521 521 **Size(bytes)** 522 -)))|=(% style="width: 30px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2532 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 120px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)2 523 523 |Value|BAT|(% style="width:207px" %)((( 524 524 Temperature(DS18B20) 525 525 (PC13) ... ... @@ -540,9 +540,9 @@ 540 540 541 541 542 542 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 543 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((553 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 544 544 **Size(bytes)** 545 -)))|=(% style="width: 20px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4555 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4 546 546 |Value|BAT|((( 547 547 Temperature 548 548 (DS18B20)(PC13) ... ... @@ -579,9 +579,11 @@ 579 579 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 580 580 581 581 582 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 592 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ==== 583 583 584 584 595 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 596 + 585 585 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 586 586 587 587 [[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] ... ... @@ -592,8 +592,8 @@ 592 592 593 593 [[image:image-20230817172209-2.png||height="439" width="683"]] 594 594 595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width: 690px" %)596 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width: 89px" %)**2**607 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 608 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 597 597 |Value|Bat|(% style="width:191px" %)((( 598 598 Temperature(DS18B20)(PC13) 599 599 )))|(% style="width:78px" %)((( ... ... @@ -600,7 +600,6 @@ 600 600 ADC(PA4) 601 601 )))|(% style="width:135px" %)((( 602 602 PWM_Setting 603 - 604 604 &Digital Interrupt(PA8) 605 605 )))|(% style="width:70px" %)((( 606 606 Pulse period ... ... @@ -630,9 +630,38 @@ 630 630 [[image:image-20230818092200-1.png||height="344" width="627"]] 631 631 632 632 633 -===== 2.3.2.10.b Downlink, PWM output =====644 +===== 2.3.2.10.b Uplink, PWM output ===== 634 634 635 635 647 +[[image:image-20230817172209-2.png||height="439" width="683"]] 648 + 649 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 650 + 651 +a is the time delay of the output, the unit is ms. 652 + 653 +b is the output frequency, the unit is HZ. 654 + 655 +c is the duty cycle of the output, the unit is %. 656 + 657 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 658 + 659 +aa is the time delay of the output, the unit is ms. 660 + 661 +bb is the output frequency, the unit is HZ. 662 + 663 +cc is the duty cycle of the output, the unit is %. 664 + 665 + 666 +For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 667 + 668 +The oscilloscope displays as follows: 669 + 670 +[[image:image-20231213102404-1.jpeg||height="688" width="821"]] 671 + 672 + 673 +===== 2.3.2.10.c Downlink, PWM output ===== 674 + 675 + 636 636 [[image:image-20230817173800-3.png||height="412" width="685"]] 637 637 638 638 Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** ... ... @@ -648,7 +648,7 @@ 648 648 649 649 The oscilloscope displays as follows: 650 650 651 -[[image:image-20230817173858-5.png||height="6 94" width="921"]]691 +[[image:image-20230817173858-5.png||height="634" width="843"]] 652 652 653 653 654 654 === 2.3.3 Decode payload === ... ... @@ -660,13 +660,13 @@ 660 660 661 661 The payload decoder function for TTN V3 are here: 662 662 663 -SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 703 +SN50v3-LB/LS TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 664 664 665 665 666 666 ==== 2.3.3.1 Battery Info ==== 667 667 668 668 669 -Check the battery voltage for SN50v3-LB. 709 +Check the battery voltage for SN50v3-LB/LS. 670 670 671 671 Ex1: 0x0B45 = 2885mV 672 672 ... ... @@ -728,10 +728,12 @@ 728 728 729 729 [[image:image-20230811113449-1.png||height="370" width="608"]] 730 730 771 + 772 + 731 731 ==== 2.3.3.5 Digital Interrupt ==== 732 732 733 733 734 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 776 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server. 735 735 736 736 (% style="color:blue" %)** Interrupt connection method:** 737 737 ... ... @@ -744,18 +744,18 @@ 744 744 745 745 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 746 746 747 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 789 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window. 748 748 749 749 750 750 (% style="color:blue" %)**Below is the installation example:** 751 751 752 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 794 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows: 753 753 754 754 * ((( 755 -One pin to SN50v3-LB's PA8 pin 797 +One pin to SN50v3-LB/LS's PA8 pin 756 756 ))) 757 757 * ((( 758 -The other pin to SN50v3-LB's VDD pin 800 +The other pin to SN50v3-LB/LS's VDD pin 759 759 ))) 760 760 761 761 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -791,7 +791,7 @@ 791 791 792 792 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 793 793 794 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 836 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.** 795 795 796 796 797 797 Below is the connection to SHT20/ SHT31. The connection is as below: ... ... @@ -825,7 +825,7 @@ 825 825 826 826 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 827 827 828 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 870 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 829 829 830 830 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 831 831 ... ... @@ -834,7 +834,7 @@ 834 834 [[image:image-20230512173903-6.png||height="596" width="715"]] 835 835 836 836 837 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 879 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 838 838 839 839 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 840 840 ... ... @@ -846,13 +846,13 @@ 846 846 ==== 2.3.3.9 Battery Output - BAT pin ==== 847 847 848 848 849 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 891 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon. 850 850 851 851 852 852 ==== 2.3.3.10 +5V Output ==== 853 853 854 854 855 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 897 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 856 856 857 857 The 5V output time can be controlled by AT Command. 858 858 ... ... @@ -891,10 +891,18 @@ 891 891 ))) 892 892 * ((( 893 893 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 936 +))) 937 +* ((( 938 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 894 894 895 - 940 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 941 + 942 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used. 943 + 944 +b) If the output duration is more than 30 seconds, better to use external power source. 896 896 ))) 897 897 947 + 898 898 ==== 2.3.3.13 Working MOD ==== 899 899 900 900 ... ... @@ -928,17 +928,17 @@ 928 928 == 2.5 Frequency Plans == 929 929 930 930 931 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 981 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 932 932 933 933 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 934 934 935 935 936 -= 3. Configure SN50v3-LB = 986 += 3. Configure SN50v3-LB/LS = 937 937 938 938 == 3.1 Configure Methods == 939 939 940 940 941 -SN50v3-LB supports below configure method: 991 +SN50v3-LB/LS supports below configure method: 942 942 943 943 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 944 944 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. ... ... @@ -957,10 +957,10 @@ 957 957 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 958 958 959 959 960 -== 3.3 Commands special design for SN50v3-LB == 1010 +== 3.3 Commands special design for SN50v3-LB/LS == 961 961 962 962 963 -These commands only valid for SN50v3-LB, as below: 1013 +These commands only valid for SN50v3-LB/LS, as below: 964 964 965 965 966 966 === 3.3.1 Set Transmit Interval Time === ... ... @@ -971,7 +971,7 @@ 971 971 (% style="color:blue" %)**AT Command: AT+TDC** 972 972 973 973 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 974 -|=(% style="width: 156px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**1024 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response** 975 975 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 976 976 30000 977 977 OK ... ... @@ -1009,7 +1009,7 @@ 1009 1009 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 1010 1010 1011 1011 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1012 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1062 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1013 1013 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1014 1014 0 1015 1015 OK ... ... @@ -1053,7 +1053,7 @@ 1053 1053 (% style="color:blue" %)**AT Command: AT+5VT** 1054 1054 1055 1055 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1056 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1106 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1057 1057 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1058 1058 500(default) 1059 1059 OK ... ... @@ -1079,7 +1079,7 @@ 1079 1079 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1080 1080 1081 1081 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1082 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1132 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1083 1083 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1084 1084 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1085 1085 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -1106,7 +1106,7 @@ 1106 1106 (% style="color:blue" %)**AT Command: AT+SETCNT** 1107 1107 1108 1108 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1109 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1159 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1110 1110 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1111 1111 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1112 1112 ... ... @@ -1127,7 +1127,7 @@ 1127 1127 (% style="color:blue" %)**AT Command: AT+MOD** 1128 1128 1129 1129 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1130 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1180 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1131 1131 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1132 1132 OK 1133 1133 ))) ... ... @@ -1143,24 +1143,26 @@ 1143 1143 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1144 1144 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1145 1145 1196 +(% id="H3.3.8PWMsetting" %) 1146 1146 === 3.3.8 PWM setting === 1147 1147 1148 -Feature: Set the time acquisition unit for PWM input capture. 1149 1149 1200 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture. 1201 + 1150 1150 (% style="color:blue" %)**AT Command: AT+PWMSET** 1151 1151 1152 1152 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1153 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width:197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1154 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width: 196px" %)0|(% style="width:157px" %)(((1205 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 223px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response** 1206 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1155 1155 0(default) 1156 1156 1157 1157 OK 1158 1158 ))) 1159 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width: 196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)(((1211 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1160 1160 OK 1161 1161 1162 1162 ))) 1163 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width: 196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK1215 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1164 1164 1165 1165 (% style="color:blue" %)**Downlink Command: 0x0C** 1166 1166 ... ... @@ -1169,11 +1169,75 @@ 1169 1169 * Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1170 1170 * Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1171 1171 1172 -= 4. Battery&PowerConsumption=1224 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle. 1173 1173 1226 +(% style="color:blue" %)**AT Command: AT+PWMOUT** 1174 1174 1175 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1228 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1229 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1230 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1231 +0,0,0(default) 1176 1176 1233 +OK 1234 +))) 1235 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1236 +OK 1237 + 1238 +))) 1239 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1240 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1241 + 1242 + 1243 +)))|(% style="width:137px" %)((( 1244 +OK 1245 +))) 1246 + 1247 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1248 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters** 1249 +|(% colspan="1" rowspan="3" style="width:155px" %)((( 1250 +AT+PWMOUT=a,b,c 1251 + 1252 + 1253 +)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1254 +Set PWM output time, output frequency and output duty cycle. 1255 + 1256 +((( 1257 + 1258 +))) 1259 + 1260 +((( 1261 + 1262 +))) 1263 +)))|(% style="width:242px" %)((( 1264 +a: Output time (unit: seconds) 1265 + 1266 +The value ranges from 0 to 65535. 1267 + 1268 +When a=65535, PWM will always output. 1269 +))) 1270 +|(% style="width:242px" %)((( 1271 +b: Output frequency (unit: HZ) 1272 +))) 1273 +|(% style="width:242px" %)((( 1274 +c: Output duty cycle (unit: %) 1275 + 1276 +The value ranges from 0 to 100. 1277 +))) 1278 + 1279 +(% style="color:blue" %)**Downlink Command: 0x0B01** 1280 + 1281 +Format: Command Code (0x0B01) followed by 6 bytes. 1282 + 1283 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1284 + 1285 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1286 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1287 + 1288 += 4. Battery & Power Cons = 1289 + 1290 + 1291 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace. 1292 + 1177 1177 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 1178 1178 1179 1179 ... ... @@ -1181,7 +1181,7 @@ 1181 1181 1182 1182 1183 1183 (% class="wikigeneratedid" %) 1184 -**User can change firmware SN50v3-LB to:** 1300 +**User can change firmware SN50v3-LB/LS to:** 1185 1185 1186 1186 * Change Frequency band/ region. 1187 1187 * Update with new features. ... ... @@ -1196,22 +1196,22 @@ 1196 1196 1197 1197 = 6. FAQ = 1198 1198 1199 -== 6.1 Where can i find source code of SN50v3-LB? == 1315 +== 6.1 Where can i find source code of SN50v3-LB/LS? == 1200 1200 1201 1201 1202 1202 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1203 1203 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1204 1204 1205 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1321 +== 6.2 How to generate PWM Output in SN50v3-LB/LS? == 1206 1206 1207 1207 1208 1208 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1209 1209 1210 1210 1211 -== 6.3 How to put several sensors to a SN50v3-LB? == 1327 +== 6.3 How to put several sensors to a SN50v3-LB/LS? == 1212 1212 1213 1213 1214 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1330 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1215 1215 1216 1216 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1217 1217 ... ... @@ -1221,7 +1221,7 @@ 1221 1221 = 7. Order Info = 1222 1222 1223 1223 1224 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** 1340 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY** 1225 1225 1226 1226 (% style="color:red" %)**XX**(%%): The default frequency band 1227 1227 ... ... @@ -1246,7 +1246,7 @@ 1246 1246 1247 1247 (% style="color:#037691" %)**Package Includes**: 1248 1248 1249 -* SN50v3-LB LoRaWAN Generic Node 1365 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node 1250 1250 1251 1251 (% style="color:#037691" %)**Dimension and weight**: 1252 1252
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +35.4 KB - Content
- image-20231231203439-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.6 KB - Content
- image-20240103095513-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +577.4 KB - Content
- image-20240103095714-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +230.1 KB - Content