Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.ting - Content
-
... ... @@ -19,7 +19,7 @@ 19 19 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphonedetection,building automation, andso on.22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 23 23 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 ... ... @@ -27,7 +27,6 @@ 27 27 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 - 31 31 == 1.2 Features == 32 32 33 33 ... ... @@ -581,6 +581,7 @@ 581 581 582 582 ==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 583 583 583 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 584 584 585 585 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 586 586 ... ... @@ -629,10 +629,17 @@ 629 629 630 630 [[image:image-20230818092200-1.png||height="344" width="627"]] 631 631 632 +===== 2.3.2.10.b Uplink, PWM input capture ===== 632 632 633 -===== 2.3.2.10.b Downlink, PWM output ===== 634 634 635 635 636 + 637 + 638 + 639 + 640 +===== 2.3.2.10.c Downlink, PWM output ===== 641 + 642 + 636 636 [[image:image-20230817173800-3.png||height="412" width="685"]] 637 637 638 638 Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** ... ... @@ -891,7 +891,17 @@ 891 891 ))) 892 892 * ((( 893 893 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 901 +))) 902 +* ((( 903 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 894 894 905 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 906 + 907 +a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used. 908 + 909 +b) If the output duration is more than 30 seconds, better to use external power source. 910 + 911 + 895 895 896 896 ))) 897 897 ... ... @@ -1145,8 +1145,9 @@ 1145 1145 1146 1146 === 3.3.8 PWM setting === 1147 1147 1148 -Feature: Set the time acquisition unit for PWM input capture. 1149 1149 1166 +* Feature: Set the time acquisition unit for PWM input capture. 1167 + 1150 1150 (% style="color:blue" %)**AT Command: AT+PWMSET** 1151 1151 1152 1152 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) ... ... @@ -1169,6 +1169,43 @@ 1169 1169 * Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1170 1170 * Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1171 1171 1190 +* Feature: Set the time acquisition unit for PWM input capture. 1191 + 1192 +(% style="color:blue" %)**AT Command: AT+PWMOUT** 1193 + 1194 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:580px" %) 1195 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1196 +|(% style="width:154px" %)AT+PWMOUT=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1197 +0,0,0(default) 1198 + 1199 +OK 1200 +))) 1201 +|(% style="width:154px" %)AT+PWMOUT=0,0,0|(% style="width:196px" %)The default is PWM input detection|(% style="width:157px" %)((( 1202 +OK 1203 + 1204 +))) 1205 +|(% style="width:154px" %)AT+PWMOUT=a,b,c|(% style="width:250px" %)((( 1206 +PWM output. 1207 + 1208 +a: Output time (unit: seconds) 1209 + 1210 +b: Output frequency (unit: HZ) 1211 + 1212 +c: Output duty cycle (unit: %) 1213 +)))|(% style="width:157px" %)((( 1214 +OK 1215 +))) 1216 + 1217 + 1218 +(% style="color:blue" %)**Downlink Command: 0x0C** 1219 + 1220 + 1221 +Format: Command Code (0x0C) followed by 1 bytes. 1222 + 1223 +* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1224 +* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1225 + 1226 + 1172 1172 = 4. Battery & Power Consumption = 1173 1173 1174 1174