Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 6 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor Node User Manual 1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual - Content
-
... ... @@ -1,10 +1,15 @@ 1 + 2 + 1 1 (% style="text-align:center" %) 2 -[[image:image-202 30515135611-1.jpeg||height="589" width="589"]]4 +[[image:image-20240103095714-2.png]] 3 3 4 4 5 5 6 -**Table of Contents:** 7 7 9 + 10 + 11 +**Table of Contents:** 12 + 8 8 {{toc/}} 9 9 10 10 ... ... @@ -14,20 +14,19 @@ 14 14 15 15 = 1. Introduction = 16 16 17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node == 22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node == 18 18 19 19 20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%) or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphonedetection,building automation, andso on.27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 23 23 24 -(% style="color:blue" %)** SN50V3-LB **(%%)has a powerful48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors. 25 25 26 -(% style="color:blue" %)** SN50V3-LB**(%%) has abuilt-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining. 27 27 28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 - 31 31 == 1.2 Features == 32 32 33 33 ... ... @@ -39,7 +39,8 @@ 39 39 * Support wireless OTA update firmware 40 40 * Uplink on periodically 41 41 * Downlink to change configure 42 -* 8500mAh Battery for long term use 46 +* 8500mAh Li/SOCl2 battery (SN50v3-LB) 47 +* Solar panel + 3000mAh Li-on battery (SN50v3-LS) 43 43 44 44 == 1.3 Specification == 45 45 ... ... @@ -46,7 +46,7 @@ 46 46 47 47 (% style="color:#037691" %)**Common DC Characteristics:** 48 48 49 -* Supply Voltage: built in8500mAh Li-SOCI2battery , 2.5v ~~ 3.6v54 +* Supply Voltage: Built- in battery , 2.5v ~~ 3.6v 50 50 * Operating Temperature: -40 ~~ 85°C 51 51 52 52 (% style="color:#037691" %)**I/O Interface:** ... ... @@ -89,7 +89,7 @@ 89 89 == 1.5 Button & LEDs == 90 90 91 91 92 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 97 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]] 93 93 94 94 95 95 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) ... ... @@ -108,7 +108,7 @@ 108 108 == 1.6 BLE connection == 109 109 110 110 111 -SN50v3-LB supports BLE remote configure. 116 +SN50v3-LB/LS supports BLE remote configure. 112 112 113 113 114 114 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: ... ... @@ -128,18 +128,23 @@ 128 128 129 129 == 1.8 Mechanical == 130 130 136 +=== 1.8.1 for LB version === 131 131 132 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 133 133 134 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 139 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 135 135 141 + 136 136 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 137 137 144 +=== 1.8.2 for LS version === 138 138 146 +[[image:image-20231231203439-3.png||height="385" width="886"]] 147 + 148 + 139 139 == 1.9 Hole Option == 140 140 141 141 142 -SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 152 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 143 143 144 144 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] 145 145 ... ... @@ -146,12 +146,12 @@ 146 146 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]] 147 147 148 148 149 -= 2. Configure SN50v3-LB to connect to LoRaWAN network = 159 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network = 150 150 151 151 == 2.1 How it works == 152 152 153 153 154 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 164 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 155 155 156 156 157 157 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -162,9 +162,9 @@ 162 162 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 163 163 164 164 165 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. 175 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS. 166 166 167 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below: 177 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below: 168 168 169 169 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]] 170 170 ... ... @@ -193,10 +193,10 @@ 193 193 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 194 194 195 195 196 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB 206 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS 197 197 198 198 199 -Press the button for 5 seconds to activate the SN50v3-LB. 209 +Press the button for 5 seconds to activate the SN50v3-LB/LS. 200 200 201 201 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 202 202 ... ... @@ -208,7 +208,7 @@ 208 208 === 2.3.1 Device Status, FPORT~=5 === 209 209 210 210 211 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 221 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server. 212 212 213 213 The Payload format is as below. 214 214 ... ... @@ -221,7 +221,7 @@ 221 221 Example parse in TTNv3 222 222 223 223 224 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 234 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C 225 225 226 226 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 227 227 ... ... @@ -277,7 +277,7 @@ 277 277 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 278 278 279 279 280 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 290 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes. 281 281 282 282 For example: 283 283 ... ... @@ -286,7 +286,7 @@ 286 286 287 287 (% style="color:red" %) **Important Notice:** 288 288 289 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 299 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload. 290 290 291 291 2. All modes share the same Payload Explanation from HERE. 292 292 ... ... @@ -581,6 +581,7 @@ 581 581 582 582 ==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 583 583 594 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 584 584 585 585 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 586 586 ... ... @@ -592,8 +592,8 @@ 592 592 593 593 [[image:image-20230817172209-2.png||height="439" width="683"]] 594 594 595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width: 690px" %)596 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width: 89px" %)**2**606 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 607 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 597 597 |Value|Bat|(% style="width:191px" %)((( 598 598 Temperature(DS18B20)(PC13) 599 599 )))|(% style="width:78px" %)((( ... ... @@ -600,7 +600,6 @@ 600 600 ADC(PA4) 601 601 )))|(% style="width:135px" %)((( 602 602 PWM_Setting 603 - 604 604 &Digital Interrupt(PA8) 605 605 )))|(% style="width:70px" %)((( 606 606 Pulse period ... ... @@ -613,25 +613,53 @@ 613 613 614 614 When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 615 615 616 -Frequency: 626 +**Frequency:** 617 617 618 618 (% class="MsoNormal" %) 619 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0,**(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 629 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 620 620 621 621 (% class="MsoNormal" %) 622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1,**(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 632 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 623 623 634 + 624 624 (% class="MsoNormal" %) 625 -Duty cycle: 636 +**Duty cycle:** 626 626 627 627 Duty cycle= Duration of high level/ Pulse period*100 ~(%). 628 628 629 629 [[image:image-20230818092200-1.png||height="344" width="627"]] 630 630 642 +===== 2.3.2.10.b Uplink, PWM output ===== 631 631 632 - =====2.3.2.10.b Downlink, PWM output=====644 +[[image:image-20230817172209-2.png||height="439" width="683"]] 633 633 646 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 634 634 648 +a is the time delay of the output, the unit is ms. 649 + 650 +b is the output frequency, the unit is HZ. 651 + 652 +c is the duty cycle of the output, the unit is %. 653 + 654 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 655 + 656 +aa is the time delay of the output, the unit is ms. 657 + 658 +bb is the output frequency, the unit is HZ. 659 + 660 +cc is the duty cycle of the output, the unit is %. 661 + 662 + 663 +For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 664 + 665 +The oscilloscope displays as follows: 666 + 667 +[[image:image-20231213102404-1.jpeg||height="780" width="932"]] 668 + 669 + 670 +===== 2.3.2.10.c Downlink, PWM output ===== 671 + 672 + 635 635 [[image:image-20230817173800-3.png||height="412" width="685"]] 636 636 637 637 Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** ... ... @@ -659,13 +659,13 @@ 659 659 660 660 The payload decoder function for TTN V3 are here: 661 661 662 -SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 700 +SN50v3-LB/LS TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 663 663 664 664 665 665 ==== 2.3.3.1 Battery Info ==== 666 666 667 667 668 -Check the battery voltage for SN50v3-LB. 706 +Check the battery voltage for SN50v3-LB/LS. 669 669 670 670 Ex1: 0x0B45 = 2885mV 671 671 ... ... @@ -730,7 +730,7 @@ 730 730 ==== 2.3.3.5 Digital Interrupt ==== 731 731 732 732 733 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 771 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server. 734 734 735 735 (% style="color:blue" %)** Interrupt connection method:** 736 736 ... ... @@ -743,18 +743,18 @@ 743 743 744 744 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 745 745 746 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 784 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window. 747 747 748 748 749 749 (% style="color:blue" %)**Below is the installation example:** 750 750 751 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 789 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows: 752 752 753 753 * ((( 754 -One pin to SN50v3-LB's PA8 pin 792 +One pin to SN50v3-LB/LS's PA8 pin 755 755 ))) 756 756 * ((( 757 -The other pin to SN50v3-LB's VDD pin 795 +The other pin to SN50v3-LB/LS's VDD pin 758 758 ))) 759 759 760 760 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -790,7 +790,7 @@ 790 790 791 791 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 792 792 793 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 831 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.** 794 794 795 795 796 796 Below is the connection to SHT20/ SHT31. The connection is as below: ... ... @@ -824,7 +824,7 @@ 824 824 825 825 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 826 826 827 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 865 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 828 828 829 829 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 830 830 ... ... @@ -833,7 +833,7 @@ 833 833 [[image:image-20230512173903-6.png||height="596" width="715"]] 834 834 835 835 836 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 874 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 837 837 838 838 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 839 839 ... ... @@ -845,13 +845,13 @@ 845 845 ==== 2.3.3.9 Battery Output - BAT pin ==== 846 846 847 847 848 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 886 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon. 849 849 850 850 851 851 ==== 2.3.3.10 +5V Output ==== 852 852 853 853 854 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 892 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 855 855 856 856 The 5V output time can be controlled by AT Command. 857 857 ... ... @@ -890,10 +890,19 @@ 890 890 ))) 891 891 * ((( 892 892 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 931 +))) 932 +* ((( 933 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 893 893 894 - 935 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 936 + 937 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used. 938 + 939 +b) If the output duration is more than 30 seconds, better to use external power source. 895 895 ))) 896 896 942 + 943 + 897 897 ==== 2.3.3.13 Working MOD ==== 898 898 899 899 ... ... @@ -927,17 +927,17 @@ 927 927 == 2.5 Frequency Plans == 928 928 929 929 930 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 977 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 931 931 932 932 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 933 933 934 934 935 -= 3. Configure SN50v3-LB = 982 += 3. Configure SN50v3-LB/LS = 936 936 937 937 == 3.1 Configure Methods == 938 938 939 939 940 -SN50v3-LB supports below configure method: 987 +SN50v3-LB/LS supports below configure method: 941 941 942 942 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 943 943 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. ... ... @@ -956,10 +956,10 @@ 956 956 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 957 957 958 958 959 -== 3.3 Commands special design for SN50v3-LB == 1006 +== 3.3 Commands special design for SN50v3-LB/LS == 960 960 961 961 962 -These commands only valid for SN50v3-LB, as below: 1009 +These commands only valid for SN50v3-LB/LS, as below: 963 963 964 964 965 965 === 3.3.1 Set Transmit Interval Time === ... ... @@ -1142,24 +1142,26 @@ 1142 1142 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1143 1143 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1144 1144 1192 +(% id="H3.3.8PWMsetting" %) 1145 1145 === 3.3.8 PWM setting === 1146 1146 1147 -Feature: Set the time acquisition unit for PWM input capture. 1148 1148 1196 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture. 1197 + 1149 1149 (% style="color:blue" %)**AT Command: AT+PWMSET** 1150 1150 1151 1151 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1152 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1153 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width: 196px" %)0|(% style="width:157px" %)(((1201 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1202 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1154 1154 0(default) 1155 1155 1156 1156 OK 1157 1157 ))) 1158 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width: 196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)(((1207 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1159 1159 OK 1160 1160 1161 1161 ))) 1162 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width: 196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK1211 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1163 1163 1164 1164 (% style="color:blue" %)**Downlink Command: 0x0C** 1165 1165 ... ... @@ -1168,11 +1168,75 @@ 1168 1168 * Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1169 1169 * Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1170 1170 1171 -= 4. Battery&PowerConsumption=1220 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle. 1172 1172 1222 +(% style="color:blue" %)**AT Command: AT+PWMOUT** 1173 1173 1174 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1224 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1225 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1226 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1227 +0,0,0(default) 1175 1175 1229 +OK 1230 +))) 1231 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1232 +OK 1233 + 1234 +))) 1235 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1236 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1237 + 1238 + 1239 +)))|(% style="width:137px" %)((( 1240 +OK 1241 +))) 1242 + 1243 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1244 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters** 1245 +|(% colspan="1" rowspan="3" style="width:155px" %)((( 1246 +AT+PWMOUT=a,b,c 1247 + 1248 + 1249 +)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1250 +Set PWM output time, output frequency and output duty cycle. 1251 + 1252 +((( 1253 + 1254 +))) 1255 + 1256 +((( 1257 + 1258 +))) 1259 +)))|(% style="width:242px" %)((( 1260 +a: Output time (unit: seconds) 1261 + 1262 +The value ranges from 0 to 65535. 1263 + 1264 +When a=65535, PWM will always output. 1265 +))) 1266 +|(% style="width:242px" %)((( 1267 +b: Output frequency (unit: HZ) 1268 +))) 1269 +|(% style="width:242px" %)((( 1270 +c: Output duty cycle (unit: %) 1271 + 1272 +The value ranges from 0 to 100. 1273 +))) 1274 + 1275 +(% style="color:blue" %)**Downlink Command: 0x0B01** 1276 + 1277 +Format: Command Code (0x0B01) followed by 6 bytes. 1278 + 1279 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1280 + 1281 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1282 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1283 + 1284 += 4. Battery & Power Cons = 1285 + 1286 + 1287 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace. 1288 + 1176 1176 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 1177 1177 1178 1178 ... ... @@ -1180,7 +1180,7 @@ 1180 1180 1181 1181 1182 1182 (% class="wikigeneratedid" %) 1183 -**User can change firmware SN50v3-LB to:** 1296 +**User can change firmware SN50v3-LB/LS to:** 1184 1184 1185 1185 * Change Frequency band/ region. 1186 1186 * Update with new features. ... ... @@ -1195,22 +1195,22 @@ 1195 1195 1196 1196 = 6. FAQ = 1197 1197 1198 -== 6.1 Where can i find source code of SN50v3-LB? == 1311 +== 6.1 Where can i find source code of SN50v3-LB/LS? == 1199 1199 1200 1200 1201 1201 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1202 1202 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1203 1203 1204 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1317 +== 6.2 How to generate PWM Output in SN50v3-LB/LS? == 1205 1205 1206 1206 1207 1207 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1208 1208 1209 1209 1210 -== 6.3 How to put several sensors to a SN50v3-LB? == 1323 +== 6.3 How to put several sensors to a SN50v3-LB/LS? == 1211 1211 1212 1212 1213 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1326 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1214 1214 1215 1215 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1216 1216 ... ... @@ -1220,7 +1220,7 @@ 1220 1220 = 7. Order Info = 1221 1221 1222 1222 1223 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** 1336 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or **SN50v3-LS-XX-YY** 1224 1224 1225 1225 (% style="color:red" %)**XX**(%%): The default frequency band 1226 1226 ... ... @@ -1245,7 +1245,7 @@ 1245 1245 1246 1246 (% style="color:#037691" %)**Package Includes**: 1247 1247 1248 -* SN50v3-LB LoRaWAN Generic Node 1361 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node 1249 1249 1250 1250 (% style="color:#037691" %)**Dimension and weight**: 1251 1251
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +35.4 KB - Content
- image-20231231203439-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.6 KB - Content
- image-20240103095513-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +577.4 KB - Content
- image-20240103095714-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +230.1 KB - Content