Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 3 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Edwin - Content
-
... ... @@ -3,7 +3,7 @@ 3 3 4 4 5 5 6 -**Table of Contents :**6 +**Table of Contents:** 7 7 8 8 {{toc/}} 9 9 ... ... @@ -19,7 +19,7 @@ 19 19 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphonedetection,building automation, andso on.22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 23 23 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 ... ... @@ -27,7 +27,6 @@ 27 27 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 - 31 31 == 1.2 Features == 32 32 33 33 ... ... @@ -89,7 +89,7 @@ 89 89 == 1.5 Button & LEDs == 90 90 91 91 92 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 91 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]] 93 93 94 94 95 95 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) ... ... @@ -581,6 +581,7 @@ 581 581 582 582 ==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 583 583 583 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 584 584 585 585 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 586 586 ... ... @@ -592,8 +592,8 @@ 592 592 593 593 [[image:image-20230817172209-2.png||height="439" width="683"]] 594 594 595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width: 690px" %)596 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width: 89px" %)**2**595 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 596 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 597 597 |Value|Bat|(% style="width:191px" %)((( 598 598 Temperature(DS18B20)(PC13) 599 599 )))|(% style="width:78px" %)((( ... ... @@ -600,7 +600,6 @@ 600 600 ADC(PA4) 601 601 )))|(% style="width:135px" %)((( 602 602 PWM_Setting 603 - 604 604 &Digital Interrupt(PA8) 605 605 )))|(% style="width:70px" %)((( 606 606 Pulse period ... ... @@ -613,25 +613,53 @@ 613 613 614 614 When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 615 615 616 -Frequency: 615 +**Frequency:** 617 617 618 618 (% class="MsoNormal" %) 619 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0,**(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 618 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 620 620 621 621 (% class="MsoNormal" %) 622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1,**(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 621 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 623 623 623 + 624 624 (% class="MsoNormal" %) 625 -Duty cycle: 625 +**Duty cycle:** 626 626 627 627 Duty cycle= Duration of high level/ Pulse period*100 ~(%). 628 628 629 629 [[image:image-20230818092200-1.png||height="344" width="627"]] 630 630 631 +===== 2.3.2.10.b Uplink, PWM output ===== 631 631 632 - =====2.3.2.10.b Downlink, PWM output=====633 +[[image:image-20230817172209-2.png||height="439" width="683"]] 633 633 635 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 634 634 637 +a is the time delay of the output, the unit is ms. 638 + 639 +b is the output frequency, the unit is HZ. 640 + 641 +c is the duty cycle of the output, the unit is %. 642 + 643 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 644 + 645 +aa is the time delay of the output, the unit is ms. 646 + 647 +bb is the output frequency, the unit is HZ. 648 + 649 +cc is the duty cycle of the output, the unit is %. 650 + 651 + 652 +For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 653 + 654 +The oscilloscope displays as follows: 655 + 656 +[[image:image-20231213102404-1.jpeg||height="780" width="932"]] 657 + 658 + 659 +===== 2.3.2.10.c Downlink, PWM output ===== 660 + 661 + 635 635 [[image:image-20230817173800-3.png||height="412" width="685"]] 636 636 637 637 Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** ... ... @@ -890,7 +890,17 @@ 890 890 ))) 891 891 * ((( 892 892 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 920 +))) 921 +* ((( 922 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 893 893 924 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 925 + 926 +a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used. 927 + 928 +b) If the output duration is more than 30 seconds, better to use external power source. 929 + 930 + 894 894 895 895 ))) 896 896 ... ... @@ -1142,24 +1142,26 @@ 1142 1142 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1143 1143 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1144 1144 1182 +(% id="H3.3.8PWMsetting" %) 1145 1145 === 3.3.8 PWM setting === 1146 1146 1147 -Feature: Set the time acquisition unit for PWM input capture. 1148 1148 1186 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture. 1187 + 1149 1149 (% style="color:blue" %)**AT Command: AT+PWMSET** 1150 1150 1151 1151 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1152 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1153 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width: 196px" %)0|(% style="width:157px" %)(((1191 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1192 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1154 1154 0(default) 1155 1155 1156 1156 OK 1157 1157 ))) 1158 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width: 196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)(((1197 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1159 1159 OK 1160 1160 1161 1161 ))) 1162 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width: 196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK1201 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1163 1163 1164 1164 (% style="color:blue" %)**Downlink Command: 0x0C** 1165 1165 ... ... @@ -1168,9 +1168,73 @@ 1168 1168 * Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1169 1169 * Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1170 1170 1171 -= 4. Battery&PowerConsumption=1210 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle. 1172 1172 1212 +(% style="color:blue" %)**AT Command: AT+PWMOUT** 1173 1173 1214 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1215 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1216 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1217 +0,0,0(default) 1218 + 1219 +OK 1220 +))) 1221 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1222 +OK 1223 + 1224 +))) 1225 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1226 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1227 + 1228 + 1229 +)))|(% style="width:137px" %)((( 1230 +OK 1231 +))) 1232 + 1233 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1234 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters** 1235 +|(% colspan="1" rowspan="3" style="width:155px" %)((( 1236 +AT+PWMOUT=a,b,c 1237 + 1238 + 1239 +)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1240 +Set PWM output time, output frequency and output duty cycle. 1241 + 1242 +((( 1243 + 1244 +))) 1245 + 1246 +((( 1247 + 1248 +))) 1249 +)))|(% style="width:242px" %)((( 1250 +a: Output time (unit: seconds) 1251 + 1252 +The value ranges from 0 to 65535. 1253 + 1254 +When a=65535, PWM will always output. 1255 +))) 1256 +|(% style="width:242px" %)((( 1257 +b: Output frequency (unit: HZ) 1258 +))) 1259 +|(% style="width:242px" %)((( 1260 +c: Output duty cycle (unit: %) 1261 + 1262 +The value ranges from 0 to 100. 1263 +))) 1264 + 1265 +(% style="color:blue" %)**Downlink Command: 0x0B01** 1266 + 1267 +Format: Command Code (0x0B01) followed by 6 bytes. 1268 + 1269 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1270 + 1271 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1272 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1273 + 1274 += 4. Battery & Power Cons = 1275 + 1276 + 1174 1174 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1175 1175 1176 1176 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +35.4 KB - Content