<
From version < 74.3 >
edited by Xiaoling
on 2023/08/19 15:41
To version < 105.1 >
edited by Bei Jinggeng
on 2024/12/04 15:00
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Bei
Content
... ... @@ -1,10 +1,15 @@
1 +
2 +
1 1  (% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
4 +[[image:image-20240103095714-2.png]]
3 3  
4 4  
5 5  
6 -**Table of Contents:**
7 7  
9 +
10 +
11 +**Table of Contents:**
12 +
8 8  {{toc/}}
9 9  
10 10  
... ... @@ -14,20 +14,19 @@
14 14  
15 15  = 1. Introduction =
16 16  
17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
18 18  
19 19  
20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + Li-ion battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
24 -(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
25 25  
26 -(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
27 27  
28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 -
31 31  == 1.2 ​Features ==
32 32  
33 33  
... ... @@ -39,7 +39,8 @@
39 39  * Support wireless OTA update firmware
40 40  * Uplink on periodically
41 41  * Downlink to change configure
42 -* 8500mAh Battery for long term use
46 +* 8500mAh Li/SOCl2 Battery (SN50v3-LB)
47 +* Solar panel + 3000mAh Li-ion battery (SN50v3-LS)
43 43  
44 44  == 1.3 Specification ==
45 45  
... ... @@ -46,7 +46,7 @@
46 46  
47 47  (% style="color:#037691" %)**Common DC Characteristics:**
48 48  
49 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
54 +* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
50 50  * Operating Temperature: -40 ~~ 85°C
51 51  
52 52  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -89,11 +89,10 @@
89 89  == 1.5 Button & LEDs ==
90 90  
91 91  
92 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
97 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
93 93  
94 -
95 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
96 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
99 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
100 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
97 97  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
98 98  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
99 99  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -108,7 +108,7 @@
108 108  == 1.6 BLE connection ==
109 109  
110 110  
111 -SN50v3-LB supports BLE remote configure.
115 +SN50v3-LB/LS supports BLE remote configure.
112 112  
113 113  
114 114  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -128,18 +128,22 @@
128 128  
129 129  == 1.8 Mechanical ==
130 130  
135 +=== 1.8.1 for LB version ===
131 131  
132 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
133 133  
134 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
138 +[[image:image-20240924112806-1.png||height="548" width="894"]]
135 135  
136 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
137 137  
138 138  
142 +=== 1.8.2 for LS version ===
143 +
144 +[[image:image-20231231203439-3.png||height="385" width="886"]]
145 +
146 +
139 139  == 1.9 Hole Option ==
140 140  
141 141  
142 -SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
150 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
143 143  
144 144  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
145 145  
... ... @@ -146,12 +146,12 @@
146 146  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
147 147  
148 148  
149 -= 2. Configure SN50v3-LB to connect to LoRaWAN network =
157 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
150 150  
151 151  == 2.1 How it works ==
152 152  
153 153  
154 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
162 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
155 155  
156 156  
157 157  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -162,9 +162,9 @@
162 162  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
163 163  
164 164  
165 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
173 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
166 166  
167 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
175 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
168 168  
169 169  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
170 170  
... ... @@ -192,12 +192,10 @@
192 192  
193 193  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
194 194  
203 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
195 195  
196 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
205 +Press the button for 5 seconds to activate the SN50v3-LB/LS.
197 197  
198 -
199 -Press the button for 5 seconds to activate the SN50v3-LB.
200 -
201 201  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
202 202  
203 203  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
... ... @@ -208,13 +208,13 @@
208 208  === 2.3.1 Device Status, FPORT~=5 ===
209 209  
210 210  
211 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
217 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
212 212  
213 213  The Payload format is as below.
214 214  
215 215  
216 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
217 -|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
222 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
223 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
218 218  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
219 219  |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
220 220  
... ... @@ -221,7 +221,7 @@
221 221  Example parse in TTNv3
222 222  
223 223  
224 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
230 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
225 225  
226 226  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
227 227  
... ... @@ -277,7 +277,7 @@
277 277  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
278 278  
279 279  
280 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
286 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
281 281  
282 282  For example:
283 283  
... ... @@ -286,7 +286,7 @@
286 286  
287 287  (% style="color:red" %) **Important Notice:**
288 288  
289 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
295 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
290 290  
291 291  2. All modes share the same Payload Explanation from HERE.
292 292  
... ... @@ -298,8 +298,8 @@
298 298  
299 299  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
300 300  
301 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
302 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
307 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
308 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
303 303  |Value|Bat|(% style="width:191px" %)(((
304 304  Temperature(DS18B20)(PC13)
305 305  )))|(% style="width:78px" %)(((
... ... @@ -320,8 +320,8 @@
320 320  
321 321  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
322 322  
323 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
324 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
329 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
330 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
325 325  |Value|BAT|(% style="width:196px" %)(((
326 326  Temperature(DS18B20)(PC13)
327 327  )))|(% style="width:87px" %)(((
... ... @@ -350,8 +350,8 @@
350 350  
351 351  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
352 352  
353 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
354 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
359 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
360 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2**
355 355  |Value|BAT|(% style="width:183px" %)(((
356 356  Temperature(DS18B20)(PC13)
357 357  )))|(% style="width:173px" %)(((
... ... @@ -385,10 +385,10 @@
385 385  
386 386  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
387 387  
388 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
389 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
394 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
395 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
390 390  **Size(bytes)**
391 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
397 +)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
392 392  |Value|(% style="width:68px" %)(((
393 393  ADC1(PA4)
394 394  )))|(% style="width:75px" %)(((
... ... @@ -411,8 +411,8 @@
411 411  
412 412  This mode has total 11 bytes. As shown below:
413 413  
414 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
415 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
420 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
421 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**
416 416  |Value|BAT|(% style="width:186px" %)(((
417 417  Temperature1(DS18B20)(PC13)
418 418  )))|(% style="width:82px" %)(((
... ... @@ -452,10 +452,10 @@
452 452  
453 453  Check the response of this command and adjust the value to match the real value for thing.
454 454  
455 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
456 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
461 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
462 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
457 457  **Size(bytes)**
458 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
464 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 198px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 49px;background-color:#4F81BD;color:white" %)**4**
459 459  |Value|BAT|(% style="width:193px" %)(((
460 460  Temperature(DS18B20)(PC13)
461 461  )))|(% style="width:85px" %)(((
... ... @@ -479,8 +479,8 @@
479 479  
480 480  (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
481 481  
482 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
483 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
488 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
489 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 77px;background-color:#4F81BD;color:white" %)**4**
484 484  |Value|BAT|(% style="width:256px" %)(((
485 485  Temperature(DS18B20)(PC13)
486 486  )))|(% style="width:108px" %)(((
... ... @@ -497,10 +497,10 @@
497 497  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
498 498  
499 499  
500 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
501 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
506 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
507 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
502 502  **Size(bytes)**
503 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
509 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
504 504  |Value|BAT|(% style="width:188px" %)(((
505 505  Temperature(DS18B20)
506 506  (PC13)
... ... @@ -516,10 +516,10 @@
516 516  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
517 517  
518 518  
519 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
520 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
525 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
526 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
521 521  **Size(bytes)**
522 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
528 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)2
523 523  |Value|BAT|(% style="width:207px" %)(((
524 524  Temperature(DS18B20)
525 525  (PC13)
... ... @@ -539,10 +539,10 @@
539 539  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
540 540  
541 541  
542 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
543 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
548 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
549 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
544 544  **Size(bytes)**
545 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
551 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4
546 546  |Value|BAT|(((
547 547  Temperature
548 548  (DS18B20)(PC13)
... ... @@ -579,9 +579,11 @@
579 579  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
580 580  
581 581  
582 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
588 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
583 583  
584 584  
591 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
592 +
585 585  In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
586 586  
587 587  [[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
... ... @@ -592,8 +592,8 @@
592 592  
593 593  [[image:image-20230817172209-2.png||height="439" width="683"]]
594 594  
595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
596 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
603 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
604 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
597 597  |Value|Bat|(% style="width:191px" %)(((
598 598  Temperature(DS18B20)(PC13)
599 599  )))|(% style="width:78px" %)(((
... ... @@ -600,7 +600,6 @@
600 600  ADC(PA4)
601 601  )))|(% style="width:135px" %)(((
602 602  PWM_Setting
603 -
604 604  &Digital Interrupt(PA8)
605 605  )))|(% style="width:70px" %)(((
606 606  Pulse period
... ... @@ -613,16 +613,17 @@
613 613  
614 614  When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
615 615  
616 -Frequency:
623 +**Frequency:**
617 617  
618 618  (% class="MsoNormal" %)
619 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0,**(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
626 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
620 620  
621 621  (% class="MsoNormal" %)
622 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1,**(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
629 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
623 623  
631 +
624 624  (% class="MsoNormal" %)
625 -Duty cycle:
633 +**Duty cycle:**
626 626  
627 627  Duty cycle= Duration of high level/ Pulse period*100 ~(%).
628 628  
... ... @@ -629,9 +629,38 @@
629 629  [[image:image-20230818092200-1.png||height="344" width="627"]]
630 630  
631 631  
632 -===== 2.3.2.10.b  Downlink, PWM output =====
640 +===== 2.3.2.10.b  Uplink, PWM output =====
633 633  
634 634  
643 +[[image:image-20230817172209-2.png||height="439" width="683"]]
644 +
645 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
646 +
647 +a is the time delay of the output, the unit is ms.
648 +
649 +b is the output frequency, the unit is HZ.
650 +
651 +c is the duty cycle of the output, the unit is %.
652 +
653 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
654 +
655 +aa is the time delay of the output, the unit is ms.
656 +
657 +bb is the output frequency, the unit is HZ.
658 +
659 +cc is the duty cycle of the output, the unit is %.
660 +
661 +
662 +For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
663 +
664 +The oscilloscope displays as follows:
665 +
666 +[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
667 +
668 +
669 +===== 2.3.2.10.c  Downlink, PWM output =====
670 +
671 +
635 635  [[image:image-20230817173800-3.png||height="412" width="685"]]
636 636  
637 637  Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
... ... @@ -647,9 +647,64 @@
647 647  
648 648  The oscilloscope displays as follows:
649 649  
650 -[[image:image-20230817173858-5.png||height="694" width="921"]]
687 +[[image:image-20230817173858-5.png||height="634" width="843"]]
651 651  
652 652  
690 +
691 +==== 2.3.2.11  MOD~=11 (TEMP117)(Since firmware V1.3.0) ====
692 +
693 +
694 +In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
695 +
696 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
697 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
698 +|Value|Bat|(% style="width:191px" %)(((
699 +Temperature(DS18B20)(PC13)
700 +)))|(% style="width:78px" %)(((
701 +ADC(PA4)
702 +)))|(% style="width:216px" %)(((
703 +Digital in(PB15)&Digital Interrupt(PA8)
704 +)))|(% style="width:308px" %)(((
705 +Temperature
706 +
707 +(TEMP117)
708 +)))|(% style="width:154px" %)(((
709 +Reserved position, meaningless
710 +
711 +(0x0000)
712 +)))
713 +
714 +[[image:image-20240717113113-1.png||height="352" width="793"]]
715 +
716 +Connection:
717 +
718 +[[image:image-20240717141528-2.jpeg||height="430" width="654"]]
719 +
720 +
721 +==== 2.3.2.12  MOD~=12 (Count+SHT31)(Since firmware V1.3.1) ====
722 +
723 +
724 +This mode has total 11 bytes. As shown below:
725 +
726 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
727 +|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**Size(bytes)**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**4**
728 +|Value|BAT|(% style="width:86px" %)(((
729 + Temperature_SHT31
730 +)))|(% style="width:86px" %)(((
731 +Humidity_SHT31
732 +)))|(% style="width:86px" %)(((
733 + Digital in(PB15)
734 +)))|(% style="width:86px" %)(((
735 +Count(PA8)
736 +)))
737 +
738 +[[image:image-20240717150948-5.png||height="389" width="979"]]
739 +
740 +Wiring example:
741 +
742 +[[image:image-20240717152224-6.jpeg||height="359" width="680"]]
743 +
744 +
653 653  === 2.3.3  ​Decode payload ===
654 654  
655 655  
... ... @@ -659,13 +659,13 @@
659 659  
660 660  The payload decoder function for TTN V3 are here:
661 661  
662 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
754 +SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
663 663  
664 664  
665 665  ==== 2.3.3.1 Battery Info ====
666 666  
667 667  
668 -Check the battery voltage for SN50v3-LB.
760 +Check the battery voltage for SN50v3-LB/LS.
669 669  
670 670  Ex1: 0x0B45 = 2885mV
671 671  
... ... @@ -727,10 +727,12 @@
727 727  
728 728  [[image:image-20230811113449-1.png||height="370" width="608"]]
729 729  
822 +
823 +
730 730  ==== 2.3.3.5 Digital Interrupt ====
731 731  
732 732  
733 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
827 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
734 734  
735 735  (% style="color:blue" %)** Interrupt connection method:**
736 736  
... ... @@ -743,18 +743,18 @@
743 743  
744 744  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
745 745  
746 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
840 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
747 747  
748 748  
749 749  (% style="color:blue" %)**Below is the installation example:**
750 750  
751 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
845 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
752 752  
753 753  * (((
754 -One pin to SN50v3-LB's PA8 pin
848 +One pin to SN50v3-LB/LS's PA8 pin
755 755  )))
756 756  * (((
757 -The other pin to SN50v3-LB's VDD pin
851 +The other pin to SN50v3-LB/LS's VDD pin
758 758  )))
759 759  
760 760  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -790,7 +790,7 @@
790 790  
791 791  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
792 792  
793 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
887 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
794 794  
795 795  
796 796  Below is the connection to SHT20/ SHT31. The connection is as below:
... ... @@ -824,7 +824,7 @@
824 824  
825 825  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
826 826  
827 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
921 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
828 828  
829 829  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
830 830  
... ... @@ -833,7 +833,7 @@
833 833  [[image:image-20230512173903-6.png||height="596" width="715"]]
834 834  
835 835  
836 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
930 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
837 837  
838 838  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
839 839  
... ... @@ -845,13 +845,13 @@
845 845  ==== 2.3.3.9  Battery Output - BAT pin ====
846 846  
847 847  
848 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
942 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
849 849  
850 850  
851 851  ==== 2.3.3.10  +5V Output ====
852 852  
853 853  
854 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
948 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
855 855  
856 856  The 5V output time can be controlled by AT Command.
857 857  
... ... @@ -890,8 +890,15 @@
890 890  )))
891 891  * (((
892 892  Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
987 +)))
988 +* (((
989 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
893 893  
894 -
991 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
992 +
993 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
994 +
995 +b) If the output duration is more than 30 seconds, better to use external power source. 
895 895  )))
896 896  
897 897  ==== 2.3.3.13  Working MOD ====
... ... @@ -927,17 +927,17 @@
927 927  == 2.5 Frequency Plans ==
928 928  
929 929  
930 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
1031 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
931 931  
932 932  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
933 933  
934 934  
935 -= 3. Configure SN50v3-LB =
1036 += 3. Configure SN50v3-LB/LS =
936 936  
937 937  == 3.1 Configure Methods ==
938 938  
939 939  
940 -SN50v3-LB supports below configure method:
1041 +SN50v3-LB/LS supports below configure method:
941 941  
942 942  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
943 943  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -956,10 +956,10 @@
956 956  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
957 957  
958 958  
959 -== 3.3 Commands special design for SN50v3-LB ==
1060 +== 3.3 Commands special design for SN50v3-LB/LS ==
960 960  
961 961  
962 -These commands only valid for SN50v3-LB, as below:
1063 +These commands only valid for SN50v3-LB/LS, as below:
963 963  
964 964  
965 965  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -970,7 +970,7 @@
970 970  (% style="color:blue" %)**AT Command: AT+TDC**
971 971  
972 972  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
973 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
1074 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
974 974  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
975 975  30000
976 976  OK
... ... @@ -1003,41 +1003,45 @@
1003 1003  === 3.3.3 Set Interrupt Mode ===
1004 1004  
1005 1005  
1006 -Feature, Set Interrupt mode for GPIO_EXIT.
1107 +Feature, Set Interrupt mode for PB14, PB15, PA4.
1007 1007  
1008 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1109 +Before using the interrupt function of the **INT** pin, users can set the interrupt triggering mode as required.
1009 1009  
1010 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1011 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1012 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1013 -0
1014 -OK
1015 -the mode is 0 =Disable Interrupt
1016 -)))
1017 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
1018 -Set Transmit Interval
1019 -0. (Disable Interrupt),
1020 -~1. (Trigger by rising and falling edge)
1021 -2. (Trigger by falling edge)
1022 -3. (Trigger by rising edge)
1023 -)))|(% style="width:157px" %)OK
1024 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1025 -Set Transmit Interval
1026 -trigger by rising edge.
1027 -)))|(% style="width:157px" %)OK
1028 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1111 +(% style="color:#037691" %)**AT Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**AT+INTMODx**
1029 1029  
1030 -(% style="color:blue" %)**Downlink Command: 0x06**
1113 +(% style="color:#4472c4" %)**AT+INTMODx:**
1031 1031  
1115 +* (% style="color:#4472c4" %)**AT+INTMOD1   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PB14**(%%) pin.
1116 +* (% style="color:#4472c4" %)**AT+INTMOD2   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PB15**(%%) pin.
1117 +* (% style="color:#4472c4" %)**AT+INTMOD3   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PA4**(%%) pin.
1118 +
1119 +**Parameter setting:**
1120 +
1121 +* **0:** Disable Interrupt
1122 +* **1:** Trigger by rising and falling edge
1123 +* **2:** Trigger by falling edge
1124 +* **3: **Trigger by rising edge
1125 +
1126 +**Example:**
1127 +
1128 +* AT+INTMOD1=0  ~/~/Disable the PB14 pin interrupt function
1129 +* AT+INTMOD2=2  ~/~/Set the interrupt of the PB15 pin to be triggered by the falling edge
1130 +* AT+INTMOD3=3  ~/~/Set the interrupt of the PA4 pin to be triggered by the rising edge
1131 +
1132 +(% style="color:#037691" %)**Downlink Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**0x06 00 aa bb**
1133 +
1032 1032  Format: Command Code (0x06) followed by 3 bytes.
1033 1033  
1034 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1136 +(% style="color:#4472c4" %)**aa:**(%%) Set the corresponding pin. ((% style="background-color:yellow" %)**00**(%%): PB14 Pin (% style="background-color:yellow" %)**01**(%%)**: **PB15 Pin (% style="background-color:yellow" %)**02**(%%): PA4 Pin.)
1035 1035  
1036 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1037 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1038 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1039 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1138 +(% style="color:#4472c4" %)**bb: **(%%)Set interrupt mode. ((% style="background-color:yellow" %)**00**(%%) Disable, (% style="background-color:yellow" %)**01**(%%) falling or rising, (% style="background-color:yellow" %)**02**(%%) falling, (% style="background-color:yellow" %)**03**(%%) rising)
1040 1040  
1140 +**Example:**
1141 +
1142 +* Downlink Payload: **06 00 00 01     **~/~/ Equal to AT+INTMOD1=1
1143 +* Downlink Payload: **06 00 01 02     **~/~/ Equal to AT+INTMOD2=2
1144 +* Downlink Payload: **06 00 02 03     **~/~/ Equal to AT+INTMOD3=3
1145 +
1041 1041  === 3.3.4 Set Power Output Duration ===
1042 1042  
1043 1043  
... ... @@ -1052,7 +1052,7 @@
1052 1052  (% style="color:blue" %)**AT Command: AT+5VT**
1053 1053  
1054 1054  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1055 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1160 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1056 1056  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1057 1057  500(default)
1058 1058  OK
... ... @@ -1078,9 +1078,9 @@
1078 1078  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1079 1079  
1080 1080  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1081 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1186 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1082 1082  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1083 -|(% style="width:154px" %)AT+WEIGAP=|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1188 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1084 1084  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1085 1085  
1086 1086  (% style="color:blue" %)**Downlink Command: 0x08**
... ... @@ -1104,8 +1104,8 @@
1104 1104  
1105 1105  (% style="color:blue" %)**AT Command: AT+SETCNT**
1106 1106  
1107 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1108 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1212 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1213 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1109 1109  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1110 1110  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1111 1111  
... ... @@ -1125,8 +1125,8 @@
1125 1125  
1126 1126  (% style="color:blue" %)**AT Command: AT+MOD**
1127 1127  
1128 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1129 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1233 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1234 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1130 1130  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1131 1131  OK
1132 1132  )))
... ... @@ -1144,22 +1144,22 @@
1144 1144  
1145 1145  === 3.3.8 PWM setting ===
1146 1146  
1252 +
1147 1147  Feature: Set the time acquisition unit for PWM input capture.
1148 1148  
1149 1149  (% style="color:blue" %)**AT Command: AT+PWMSET**
1150 1150  
1151 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1152 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1153 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1257 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1258 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1259 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1154 1154  0(default)
1155 -
1156 1156  OK
1157 1157  )))
1158 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1263 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1159 1159  OK
1160 1160  
1161 1161  )))
1162 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1267 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1163 1163  
1164 1164  (% style="color:blue" %)**Downlink Command: 0x0C**
1165 1165  
... ... @@ -1168,11 +1168,73 @@
1168 1168  * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1169 1169  * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1170 1170  
1171 -= 4. Battery & Power Consumption =
1276 +**Feature: Set PWM output time, output frequency and output duty cycle.**
1172 1172  
1278 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1173 1173  
1174 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1280 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1281 +|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
1282 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1283 +0,0,0(default)
1284 +OK
1285 +)))
1286 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1287 +OK
1288 +
1289 +)))
1290 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1291 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1175 1175  
1293 +
1294 +)))|(% style="width:137px" %)(((
1295 +OK
1296 +)))
1297 +
1298 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1299 +|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters**
1300 +|(% colspan="1" rowspan="3" style="width:155px" %)(((
1301 +AT+PWMOUT=a,b,c
1302 +
1303 +
1304 +)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1305 +Set PWM output time, output frequency and output duty cycle.
1306 +
1307 +(((
1308 +
1309 +)))
1310 +
1311 +(((
1312 +
1313 +)))
1314 +)))|(% style="width:242px" %)(((
1315 +a: Output time (unit: seconds)
1316 +The value ranges from 0 to 65535.
1317 +When a=65535, PWM will always output.
1318 +)))
1319 +|(% style="width:242px" %)(((
1320 +b: Output frequency (unit: HZ)
1321 +)))
1322 +|(% style="width:242px" %)(((
1323 +c: Output duty cycle (unit: %)
1324 +The value ranges from 0 to 100.
1325 +)))
1326 +
1327 +(% style="color:blue" %)**Downlink Command: 0x0B**
1328 +
1329 +Format: Command Code (0x0B) followed by 6 bytes.
1330 +
1331 +0B + Output frequency (3bytes)+ Output duty cycle (1bytes)+Output time (2bytes)
1332 +
1333 +Downlink payload:0B bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1334 +
1335 +* Example 1: Downlink Payload: 0B 0003E8 32 0005 **~-~-->**  AT+PWMOUT=5,1000,50
1336 +* Example 2: Downlink Payload: 0B 0007D0 3C 000A **~-~-->**  AT+PWMOUT=10,2000,60
1337 +
1338 += 4. Battery & Power Cons =
1339 +
1340 +
1341 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1342 +
1176 1176  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1177 1177  
1178 1178  
... ... @@ -1180,7 +1180,7 @@
1180 1180  
1181 1181  
1182 1182  (% class="wikigeneratedid" %)
1183 -**User can change firmware SN50v3-LB to:**
1350 +**User can change firmware SN50v3-LB/LS to:**
1184 1184  
1185 1185  * Change Frequency band/ region.
1186 1186  * Update with new features.
... ... @@ -1193,24 +1193,42 @@
1193 1193  * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1194 1194  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1195 1195  
1196 -= 6. FAQ =
1363 += 6.  Developer Guide =
1197 1197  
1198 -== 6.1 Where can i find source code of SN50v3-LB? ==
1365 +SN50v3 is an open source project, developer can use compile their firmware for customized applications. User can get the source code from:
1199 1199  
1367 +* (((
1368 +Software Source Code: [[Releases · dragino/SN50v3 (github.com)>>url:https://github.com/dragino/SN50v3/releases]]
1369 +)))
1370 +* (((
1371 +Hardware Design files:  **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1372 +)))
1373 +* (((
1374 +Compile instruction:[[Compile instruction>>https://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LA66%20LoRaWAN%20Module/Compile%20and%20Upload%20Code%20to%20ASR6601%20Platform/]]
1375 +)))
1200 1200  
1201 -* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1202 -* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1377 +**~1. If you want to change frequency, modify the Preprocessor Symbols.**
1203 1203  
1204 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1379 +For example, change EU868 to US915
1205 1205  
1381 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656318662202-530.png?rev=1.1||alt="1656318662202-530.png"]]
1206 1206  
1383 +**2. Compile and build**
1384 +
1385 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627163212-17.png?rev=1.1||alt="image-20220627163212-17.png"]]
1386 +
1387 += 7. FAQ =
1388 +
1389 +== 7.1 How to generate PWM Output in SN50v3-LB/LS? ==
1390 +
1391 +
1207 1207  See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1208 1208  
1209 1209  
1210 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1395 +== 7.2 How to put several sensors to a SN50v3-LB/LS? ==
1211 1211  
1212 1212  
1213 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1398 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1214 1214  
1215 1215  [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1216 1216  
... ... @@ -1217,10 +1217,10 @@
1217 1217  [[image:image-20230810121434-1.png||height="242" width="656"]]
1218 1218  
1219 1219  
1220 -= 7. Order Info =
1405 += 8. Order Info =
1221 1221  
1222 1222  
1223 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1408 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1224 1224  
1225 1225  (% style="color:red" %)**XX**(%%): The default frequency band
1226 1226  
... ... @@ -1240,12 +1240,12 @@
1240 1240  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1241 1241  * (% style="color:red" %)**NH**(%%): No Hole
1242 1242  
1243 -= 8. ​Packing Info =
1428 += 9. ​Packing Info =
1244 1244  
1245 1245  
1246 1246  (% style="color:#037691" %)**Package Includes**:
1247 1247  
1248 -* SN50v3-LB LoRaWAN Generic Node
1433 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1249 1249  
1250 1250  (% style="color:#037691" %)**Dimension and weight**:
1251 1251  
... ... @@ -1254,7 +1254,7 @@
1254 1254  * Package Size / pcs : cm
1255 1255  * Weight / pcs : g
1256 1256  
1257 -= 9. Support =
1442 += 10. Support =
1258 1258  
1259 1259  
1260 1260  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
image-20231213102404-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +230.1 KB
Content
image-20240717113113-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +34.0 KB
Content
image-20240717141512-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +948.8 KB
Content
image-20240717141528-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +234.2 KB
Content
image-20240717145707-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +39.8 KB
Content
image-20240717150334-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +37.6 KB
Content
image-20240717150948-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +38.3 KB
Content
image-20240717152224-6.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +238.1 KB
Content
image-20240924112806-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +140.2 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0