<
From version < 74.2 >
edited by Xiaoling
on 2023/08/19 15:36
To version < 77.1 >
edited by Mengting Qiu
on 2023/12/13 09:49
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.ting
Content
... ... @@ -19,7 +19,7 @@
19 19  
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
... ... @@ -27,7 +27,6 @@
27 27  
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 -
31 31  == 1.2 ​Features ==
32 32  
33 33  
... ... @@ -581,13 +581,16 @@
581 581  
582 582  ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
583 583  
583 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
584 +
584 584  In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
585 585  
586 -[[It should be noted when using PWM mode.>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/#H2.3.3.12A0PWMMOD]]
587 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
587 587  
588 588  
589 589  ===== 2.3.2.10.a  Uplink, PWM input capture =====
590 590  
592 +
591 591  [[image:image-20230817172209-2.png||height="439" width="683"]]
592 592  
593 593  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
... ... @@ -611,24 +611,34 @@
611 611  
612 612  When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
613 613  
614 -Frequency:
616 +**Frequency:**
615 615  
616 616  (% class="MsoNormal" %)
617 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0,**(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
619 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
618 618  
619 619  (% class="MsoNormal" %)
620 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1,**(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
622 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
621 621  
624 +
622 622  (% class="MsoNormal" %)
623 -Duty cycle:
626 +**Duty cycle:**
624 624  
625 625  Duty cycle= Duration of high level/ Pulse period*100 ~(%).
626 626  
627 627  [[image:image-20230818092200-1.png||height="344" width="627"]]
628 628  
632 +===== 2.3.2.10.b  Uplink, PWM output =====
629 629  
630 -===== 2.3.2.10.b  Downlink, PWM output =====
634 +[[image:image-20230817172209-2.png||height="439" width="683"]]
631 631  
636 +
637 +
638 +
639 +
640 +
641 +===== 2.3.2.10.c  Downlink, PWM output =====
642 +
643 +
632 632  [[image:image-20230817173800-3.png||height="412" width="685"]]
633 633  
634 634  Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
... ... @@ -887,7 +887,17 @@
887 887  )))
888 888  * (((
889 889  Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
902 +)))
903 +* (((
904 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
890 890  
906 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
907 +
908 +a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
909 +
910 +b) If the output duration is more than 30 seconds, better to use external power source. 
911 +
912 +
891 891  
892 892  )))
893 893  
... ... @@ -1139,24 +1139,26 @@
1139 1139  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1140 1140  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1141 1141  
1164 +(% id="H3.3.8PWMsetting" %)
1142 1142  === 3.3.8 PWM setting ===
1143 1143  
1144 -Feature: Set the time acquisition unit for PWM input capture.
1145 1145  
1168 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1169 +
1146 1146  (% style="color:blue" %)**AT Command: AT+PWMSET**
1147 1147  
1148 1148  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1149 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1150 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1173 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1174 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1151 1151  0(default)
1152 1152  
1153 1153  OK
1154 1154  )))
1155 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1179 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1156 1156  OK
1157 1157  
1158 1158  )))
1159 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1183 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1160 1160  
1161 1161  (% style="color:blue" %)**Downlink Command: 0x0C**
1162 1162  
... ... @@ -1165,9 +1165,73 @@
1165 1165  * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1166 1166  * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1167 1167  
1168 -= 4. Battery & Power Consumption =
1169 1169  
1170 1170  
1194 +(% class="mark" %)Feature: Set the time acquisition unit for PWM output.
1195 +
1196 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1197 +
1198 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1199 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1200 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1201 +0,0,0(default)
1202 +
1203 +OK
1204 +)))
1205 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1206 +OK
1207 +
1208 +)))
1209 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1210 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1211 +
1212 +
1213 +)))|(% style="width:137px" %)(((
1214 +OK
1215 +)))
1216 +
1217 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1218 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1219 +|(% colspan="1" rowspan="3" style="width:155px" %)(((
1220 +AT+PWMOUT=a,b,c
1221 +
1222 +
1223 +)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1224 +Set PWM output time, output frequency and output duty cycle.(((
1225 +
1226 +)))
1227 +
1228 +(((
1229 +
1230 +)))
1231 +)))|(% style="width:242px" %)(((
1232 +a: Output time (unit: seconds)
1233 +
1234 +The value ranges from 0 to 65535.
1235 +
1236 +When a=65535, PWM will always output.
1237 +)))
1238 +|(% style="width:242px" %)(((
1239 +b: Output frequency (unit: HZ)
1240 +)))
1241 +|(% style="width:242px" %)(((
1242 +c: Output duty cycle (unit: %)
1243 +
1244 +The value ranges from 0 to 100.
1245 +)))
1246 +
1247 +(% style="color:blue" %)**Downlink Command: 0x0B01**
1248 +
1249 +Format: Command Code (0x0B01) followed by 6 bytes.
1250 +
1251 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1252 +
1253 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1254 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1255 +
1256 += 4. Battery & Power Cons =
1257 +
1258 +
1171 1171  SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1172 1172  
1173 1173  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0