Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 15 removed)
- image-20230610162852-1.png
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
Details
- Page properties
-
- Content
-
... ... @@ -123,7 +123,7 @@ 123 123 == 1.7 Pin Definitions == 124 124 125 125 126 -[[image:image-20230 610163213-1.png||height="404" width="699"]]126 +[[image:image-20230513102034-2.png]] 127 127 128 128 129 129 == 1.8 Mechanical == ... ... @@ -136,7 +136,7 @@ 136 136 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 137 137 138 138 139 -== 1.9Hole Option ==139 +== Hole Option == 140 140 141 141 142 142 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: ... ... @@ -151,7 +151,7 @@ 151 151 == 2.1 How it works == 152 152 153 153 154 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S N50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.154 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 155 155 156 156 157 157 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -159,7 +159,7 @@ 159 159 160 160 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 161 161 162 -The LPS8 v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.162 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 163 163 164 164 165 165 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -208,7 +208,7 @@ 208 208 === 2.3.1 Device Status, FPORT~=5 === 209 209 210 210 211 -Users can use the downlink command(**0x26 01**) to ask SN50v3 -LBto send device configure detail, include device configure status. SN50v3-LBwill uplink a payload via FPort=5 to server.211 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 212 212 213 213 The Payload format is as below. 214 214 ... ... @@ -216,44 +216,44 @@ 216 216 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 217 217 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 218 218 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 219 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 219 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 220 220 221 221 Example parse in TTNv3 222 222 223 223 224 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3 -LB, this value is 0x1C224 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 225 225 226 226 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 227 227 228 228 (% style="color:#037691" %)**Frequency Band**: 229 229 230 -0x01: EU868 230 +*0x01: EU868 231 231 232 -0x02: US915 232 +*0x02: US915 233 233 234 -0x03: IN865 234 +*0x03: IN865 235 235 236 -0x04: AU915 236 +*0x04: AU915 237 237 238 -0x05: KZ865 238 +*0x05: KZ865 239 239 240 -0x06: RU864 240 +*0x06: RU864 241 241 242 -0x07: AS923 242 +*0x07: AS923 243 243 244 -0x08: AS923-1 244 +*0x08: AS923-1 245 245 246 -0x09: AS923-2 246 +*0x09: AS923-2 247 247 248 -0x0a: AS923-3 248 +*0x0a: AS923-3 249 249 250 -0x0b: CN470 250 +*0x0b: CN470 251 251 252 -0x0c: EU433 252 +*0x0c: EU433 253 253 254 -0x0d: KR920 254 +*0x0d: KR920 255 255 256 -0x0e: MA869 256 +*0x0e: MA869 257 257 258 258 259 259 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -277,22 +277,19 @@ 277 277 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 278 278 279 279 280 -SN50v3 -LBhas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command(% style="color:blue" %)**AT+MOD**(%%)to set SN50v3-LBto different working modes.280 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 281 281 282 282 For example: 283 283 284 - (% style="color:blue" %)**AT+MOD=2 **(%%)284 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 285 285 286 286 287 287 (% style="color:red" %) **Important Notice:** 288 288 289 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 289 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 290 +1. All modes share the same Payload Explanation from HERE. 291 +1. By default, the device will send an uplink message every 20 minutes. 290 290 291 -2. All modes share the same Payload Explanation from HERE. 292 - 293 -3. By default, the device will send an uplink message every 20 minutes. 294 - 295 - 296 296 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 297 297 298 298 ... ... @@ -299,8 +299,8 @@ 299 299 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 300 300 301 301 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 302 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width: 50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**303 -|Value|Bat|(% style="width:191px" %)((( 299 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 300 +|**Value**|Bat|(% style="width:191px" %)((( 304 304 Temperature(DS18B20)(PC13) 305 305 )))|(% style="width:78px" %)((( 306 306 ADC(PA4) ... ... @@ -317,12 +317,11 @@ 317 317 318 318 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 319 319 320 - 321 321 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 322 322 323 323 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 324 -|(% style="background-color:#d9e2f3; color:#0070c0; width: 50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**325 -|Value|BAT|(% style="width:196px" %)((( 320 +|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 321 +|**Value**|BAT|(% style="width:196px" %)((( 326 326 Temperature(DS18B20)(PC13) 327 327 )))|(% style="width:87px" %)((( 328 328 ADC(PA4) ... ... @@ -329,30 +329,27 @@ 329 329 )))|(% style="width:189px" %)((( 330 330 Digital in(PB15) & Digital Interrupt(PA8) 331 331 )))|(% style="width:208px" %)((( 332 -Distance measure by: 328 +Distance measure by:1) LIDAR-Lite V3HP 333 333 Or 2) Ultrasonic Sensor 334 334 )))|(% style="width:117px" %)Reserved 335 335 336 336 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 337 337 338 - 339 339 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 340 340 341 341 [[image:image-20230512173758-5.png||height="563" width="712"]] 342 342 343 - 344 344 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 345 345 346 - (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**340 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 347 347 348 348 [[image:image-20230512173903-6.png||height="596" width="715"]] 349 349 350 - 351 351 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 352 352 353 353 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 354 354 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 355 -|Value|BAT|(% style="width:183px" %)((( 348 +|**Value**|BAT|(% style="width:183px" %)((( 356 356 Temperature(DS18B20)(PC13) 357 357 )))|(% style="width:173px" %)((( 358 358 Digital in(PB15) & Digital Interrupt(PA8) ... ... @@ -360,36 +360,34 @@ 360 360 ADC(PA4) 361 361 )))|(% style="width:323px" %)((( 362 362 Distance measure by:1)TF-Mini plus LiDAR 363 -Or 2) TF-Luna LiDAR 356 +Or 357 +2) TF-Luna LiDAR 364 364 )))|(% style="width:188px" %)Distance signal strength 365 365 366 366 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 367 367 368 - 369 369 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 370 370 371 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**364 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 372 372 373 373 [[image:image-20230512180609-7.png||height="555" width="802"]] 374 374 375 - 376 376 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 377 377 378 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**370 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 379 379 380 -[[image:image-20230 610170047-1.png||height="452" width="799"]]372 +[[image:image-20230513105207-4.png||height="469" width="802"]] 381 381 382 382 383 383 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 384 384 385 - 386 386 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 387 387 388 388 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 389 389 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 390 390 **Size(bytes)** 391 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 1 10px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1392 -|Value|(% style="width:68px" %)((( 382 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 383 +|**Value**|(% style="width:68px" %)((( 393 393 ADC1(PA4) 394 394 )))|(% style="width:75px" %)((( 395 395 ADC2(PA5) ... ... @@ -413,7 +413,7 @@ 413 413 414 414 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 415 415 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 416 -|Value|BAT|(% style="width:186px" %)((( 407 +|**Value**|BAT|(% style="width:186px" %)((( 417 417 Temperature1(DS18B20)(PC13) 418 418 )))|(% style="width:82px" %)((( 419 419 ADC(PA4) ... ... @@ -424,29 +424,24 @@ 424 424 425 425 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 426 426 427 - 428 428 [[image:image-20230513134006-1.png||height="559" width="736"]] 429 429 430 430 431 431 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 432 432 433 - 434 434 [[image:image-20230512164658-2.png||height="532" width="729"]] 435 435 436 436 Each HX711 need to be calibrated before used. User need to do below two steps: 437 437 438 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%)to calibrate to Zero gram.439 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%)to adjust the Calibration Factor.427 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 428 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 440 440 1. ((( 441 441 Weight has 4 bytes, the unit is g. 442 - 443 - 444 - 445 445 ))) 446 446 447 447 For example: 448 448 449 - (% style="color:blue" %)**AT+GETSENSORVALUE =0**435 +**AT+GETSENSORVALUE =0** 450 450 451 451 Response: Weight is 401 g 452 452 ... ... @@ -456,12 +456,14 @@ 456 456 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 457 457 **Size(bytes)** 458 458 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 459 -|Value|BAT|(% style="width:193px" %)((( 460 -Temperature(DS18B20)(PC13) 445 +|**Value**|BAT|(% style="width:193px" %)((( 446 +Temperature(DS18B20) 447 +(PC13) 461 461 )))|(% style="width:85px" %)((( 462 462 ADC(PA4) 463 463 )))|(% style="width:186px" %)((( 464 -Digital in(PB15) & Digital Interrupt(PA8) 451 +Digital in(PB15) & 452 +Digital Interrupt(PA8) 465 465 )))|(% style="width:100px" %)Weight 466 466 467 467 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] ... ... @@ -469,7 +469,6 @@ 469 469 470 470 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 471 471 472 - 473 473 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 474 474 475 475 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -476,12 +476,11 @@ 476 476 477 477 [[image:image-20230512181814-9.png||height="543" width="697"]] 478 478 466 +(% style="color:red" %)**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 479 479 480 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 481 - 482 482 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 483 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**484 -|Value|BAT|(% style="width:256px" %)((( 469 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 470 +|**Value**|BAT|(% style="width:256px" %)((( 485 485 Temperature(DS18B20)(PC13) 486 486 )))|(% style="width:108px" %)((( 487 487 ADC(PA4) ... ... @@ -496,12 +496,11 @@ 496 496 497 497 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 498 498 499 - 500 500 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 501 501 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 502 502 **Size(bytes)** 503 503 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 504 -|Value|BAT|(% style="width:188px" %)((( 489 +|**Value**|BAT|(% style="width:188px" %)((( 505 505 Temperature(DS18B20) 506 506 (PC13) 507 507 )))|(% style="width:83px" %)((( ... ... @@ -512,15 +512,13 @@ 512 512 513 513 [[image:image-20230513111203-7.png||height="324" width="975"]] 514 514 515 - 516 516 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 517 517 518 - 519 519 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 520 520 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 521 521 **Size(bytes)** 522 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 1 10px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2523 -|Value|BAT|(% style="width:207px" %)((( 505 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 506 +|**Value**|BAT|(% style="width:207px" %)((( 524 524 Temperature(DS18B20) 525 525 (PC13) 526 526 )))|(% style="width:94px" %)((( ... ... @@ -538,23 +538,22 @@ 538 538 539 539 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 540 540 541 - 542 542 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 543 543 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 544 544 **Size(bytes)** 545 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4546 -|Value|BAT|((( 547 -Temperature 548 -( DS18B20)(PC13)527 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 528 +|**Value**|BAT|((( 529 +Temperature1(DS18B20) 530 +(PC13) 549 549 )))|((( 550 -Temperature2 551 -( DS18B20)(PB9)532 +Temperature2(DS18B20) 533 +(PB9) 552 552 )))|((( 553 553 Digital Interrupt 554 554 (PB15) 555 555 )))|(% style="width:193px" %)((( 556 -Temperature3 557 -( DS18B20)(PB8)538 +Temperature3(DS18B20) 539 +(PB8) 558 558 )))|(% style="width:78px" %)((( 559 559 Count1(PA8) 560 560 )))|(% style="width:78px" %)((( ... ... @@ -579,77 +579,9 @@ 579 579 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 580 580 581 581 582 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 583 583 584 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 585 - 586 -[[It should be noted when using PWM mode.>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/#H2.3.3.12A0PWMMOD]] 587 - 588 - 589 -===== 2.3.2.10.a Uplink, PWM input capture ===== 590 - 591 -[[image:image-20230817172209-2.png||height="439" width="683"]] 592 - 593 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 594 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 595 -|Value|Bat|(% style="width:191px" %)((( 596 -Temperature(DS18B20)(PC13) 597 -)))|(% style="width:78px" %)((( 598 -ADC(PA4) 599 -)))|(% style="width:135px" %)((( 600 -PWM_Setting 601 - 602 -&Digital Interrupt(PA8) 603 -)))|(% style="width:70px" %)((( 604 -Pulse period 605 -)))|(% style="width:89px" %)((( 606 -Duration of high level 607 -))) 608 - 609 -[[image:image-20230817170702-1.png||height="161" width="1044"]] 610 - 611 - 612 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 613 - 614 -Frequency: 615 - 616 -(% class="MsoNormal" %) 617 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0,**(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 618 - 619 -(% class="MsoNormal" %) 620 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1,**(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 621 - 622 -(% class="MsoNormal" %) 623 -Duty cycle: 624 - 625 -Duty cycle= Duration of high level/ Pulse period*100 ~(%). 626 - 627 -[[image:image-20230818092200-1.png||height="344" width="627"]] 628 - 629 - 630 -===== 2.3.2.10.b Downlink, PWM output ===== 631 - 632 -[[image:image-20230817173800-3.png||height="412" width="685"]] 633 - 634 -Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 635 - 636 - xx xx xx is the output frequency, the unit is HZ. 637 - 638 - yy is the duty cycle of the output, the unit is %. 639 - 640 - zz zz is the time delay of the output, the unit is ms. 641 - 642 - 643 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 644 - 645 -The oscilloscope displays as follows: 646 - 647 -[[image:image-20230817173858-5.png||height="694" width="921"]] 648 - 649 - 650 650 === 2.3.3 Decode payload === 651 651 652 - 653 653 While using TTN V3 network, you can add the payload format to decode the payload. 654 654 655 655 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -656,14 +656,13 @@ 656 656 657 657 The payload decoder function for TTN V3 are here: 658 658 659 -SN50v3 -LBTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]573 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 660 660 661 661 662 662 ==== 2.3.3.1 Battery Info ==== 663 663 578 +Check the battery voltage for SN50v3. 664 664 665 -Check the battery voltage for SN50v3-LB. 666 - 667 667 Ex1: 0x0B45 = 2885mV 668 668 669 669 Ex2: 0x0B49 = 2889mV ... ... @@ -671,16 +671,14 @@ 671 671 672 672 ==== 2.3.3.2 Temperature (DS18B20) ==== 673 673 674 - 675 675 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 676 676 677 -More DS18B20 can check the [[3 DS18B20 mode>> ||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]589 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]] 678 678 679 679 (% style="color:blue" %)**Connection:** 680 680 681 681 [[image:image-20230512180718-8.png||height="538" width="647"]] 682 682 683 - 684 684 (% style="color:blue" %)**Example**: 685 685 686 686 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree ... ... @@ -692,7 +692,6 @@ 692 692 693 693 ==== 2.3.3.3 Digital Input ==== 694 694 695 - 696 696 The digital input for pin PB15, 697 697 698 698 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -702,38 +702,28 @@ 702 702 ((( 703 703 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 704 704 705 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 706 - 707 - 615 +(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V. 708 708 ))) 709 709 710 710 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 711 711 620 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 712 712 713 - The measuringrange of theADCis onlyabout0.1Vto1.1VThe voltage resolution is about0.24mv.622 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 714 714 715 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 716 - 717 717 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 718 718 626 +(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 719 719 720 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 721 721 722 - 723 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 724 - 725 -[[image:image-20230811113449-1.png||height="370" width="608"]] 726 - 727 727 ==== 2.3.3.5 Digital Interrupt ==== 728 728 631 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 729 729 730 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 731 - 732 732 (% style="color:blue" %)** Interrupt connection method:** 733 733 734 734 [[image:image-20230513105351-5.png||height="147" width="485"]] 735 735 736 - 737 737 (% style="color:blue" %)**Example to use with door sensor :** 738 738 739 739 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. ... ... @@ -740,23 +740,22 @@ 740 740 741 741 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 742 742 743 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3 -LBinterrupt interface to detect the status for the door or window.643 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 744 744 645 +(% style="color:blue" %)** Below is the installation example:** 745 745 746 - (%style="color:blue"%)**Belowisthe installationexample:**647 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 747 747 748 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 749 - 750 750 * ((( 751 -One pin to SN50v3 -LB's PA8 pin650 +One pin to SN50_v3's PA8 pin 752 752 ))) 753 753 * ((( 754 -The other pin to SN50v3 -LB's VDD pin653 +The other pin to SN50_v3's VDD pin 755 755 ))) 756 756 757 757 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 758 758 759 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%)and(% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.658 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 760 760 761 761 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 762 762 ... ... @@ -768,32 +768,29 @@ 768 768 769 769 The command is: 770 770 771 -(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ 670 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 772 772 773 773 Below shows some screen captures in TTN V3: 774 774 775 775 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 776 776 676 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 777 777 778 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 779 - 780 780 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 781 781 782 782 783 783 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 784 784 785 - 786 786 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 787 787 788 788 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 789 789 790 - (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LBwill be a good reference.**687 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference. 791 791 792 - 793 793 Below is the connection to SHT20/ SHT31. The connection is as below: 794 794 795 -[[image:image-20230610170152-2.png||height="501" width="846"]] 796 796 692 +[[image:image-20230513103633-3.png||height="448" width="716"]] 797 797 798 798 The device will be able to get the I2C sensor data now and upload to IoT Server. 799 799 ... ... @@ -812,16 +812,14 @@ 812 812 813 813 ==== 2.3.3.7 Distance Reading ==== 814 814 815 - 816 816 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 817 817 818 818 819 819 ==== 2.3.3.8 Ultrasonic Sensor ==== 820 820 821 - 822 822 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 823 823 824 -The SN50v3 -LBdetects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.718 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 825 825 826 826 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 827 827 ... ... @@ -829,9 +829,8 @@ 829 829 830 830 [[image:image-20230512173903-6.png||height="596" width="715"]] 831 831 726 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 832 832 833 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 834 - 835 835 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 836 836 837 837 **Example:** ... ... @@ -839,17 +839,16 @@ 839 839 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 840 840 841 841 735 + 842 842 ==== 2.3.3.9 Battery Output - BAT pin ==== 843 843 738 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 844 844 845 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 846 846 847 - 848 848 ==== 2.3.3.10 +5V Output ==== 849 849 743 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 850 850 851 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 852 - 853 853 The 5V output time can be controlled by AT Command. 854 854 855 855 (% style="color:blue" %)**AT+5VT=1000** ... ... @@ -856,44 +856,21 @@ 856 856 857 857 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 858 858 859 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.751 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 860 860 861 861 754 + 862 862 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 863 863 864 - 865 865 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 866 866 867 867 [[image:image-20230512172447-4.png||height="416" width="712"]] 868 868 869 - 870 870 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 871 871 872 872 873 -==== 2.3.3.12 PWMMOD ====764 +==== 2.3.3.12 Working MOD ==== 874 874 875 - 876 -* ((( 877 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 878 -))) 879 -* ((( 880 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 881 -))) 882 - 883 - [[image:image-20230817183249-3.png||height="320" width="417"]] 884 - 885 -* ((( 886 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 887 -))) 888 -* ((( 889 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 890 - 891 - 892 -))) 893 - 894 -==== 2.3.3.13 Working MOD ==== 895 - 896 - 897 897 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 898 898 899 899 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -909,8 +909,8 @@ 909 909 * 6: MOD7 910 910 * 7: MOD8 911 911 * 8: MOD9 912 -* 9: MOD10 913 913 782 + 914 914 == 2.4 Payload Decoder file == 915 915 916 916 ... ... @@ -921,6 +921,7 @@ 921 921 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 922 922 923 923 793 + 924 924 == 2.5 Frequency Plans == 925 925 926 926 ... ... @@ -956,18 +956,17 @@ 956 956 == 3.3 Commands special design for SN50v3-LB == 957 957 958 958 959 -These commands only valid for S N50v3-LB, as below:829 +These commands only valid for S31x-LB, as below: 960 960 961 961 962 962 === 3.3.1 Set Transmit Interval Time === 963 963 964 - 965 965 Feature: Change LoRaWAN End Node Transmit Interval. 966 966 967 967 (% style="color:blue" %)**AT Command: AT+TDC** 968 968 969 969 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 970 -|=(% style="width: 156px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**839 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 971 971 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 972 972 30000 973 973 OK ... ... @@ -987,25 +987,24 @@ 987 987 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 988 988 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 989 989 859 + 990 990 === 3.3.2 Get Device Status === 991 991 992 - 993 993 Send a LoRaWAN downlink to ask the device to send its status. 994 994 995 -(% style="color:blue" %)**Downlink Payload: 0x26 01 **864 +(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 996 996 997 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.866 +Sensor will upload Device Status via FPORT=5. See payload section for detail. 998 998 999 999 1000 1000 === 3.3.3 Set Interrupt Mode === 1001 1001 1002 - 1003 1003 Feature, Set Interrupt mode for GPIO_EXIT. 1004 1004 1005 1005 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 1006 1006 1007 1007 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1008 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**876 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1009 1009 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1010 1010 0 1011 1011 OK ... ... @@ -1020,6 +1020,7 @@ 1020 1020 )))|(% style="width:157px" %)OK 1021 1021 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 1022 1022 Set Transmit Interval 891 + 1023 1023 trigger by rising edge. 1024 1024 )))|(% style="width:157px" %)OK 1025 1025 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -1035,9 +1035,9 @@ 1035 1035 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 1036 1036 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 1037 1037 907 + 1038 1038 === 3.3.4 Set Power Output Duration === 1039 1039 1040 - 1041 1041 Control the output duration 5V . Before each sampling, device will 1042 1042 1043 1043 ~1. first enable the power output to external sensor, ... ... @@ -1049,7 +1049,7 @@ 1049 1049 (% style="color:blue" %)**AT Command: AT+5VT** 1050 1050 1051 1051 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1052 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**921 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1053 1053 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1054 1054 500(default) 1055 1055 OK ... ... @@ -1067,15 +1067,15 @@ 1067 1067 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1068 1068 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1069 1069 939 + 1070 1070 === 3.3.5 Set Weighing parameters === 1071 1071 1072 - 1073 1073 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 1074 1074 1075 1075 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1076 1076 1077 1077 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1078 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**947 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1079 1079 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1080 1080 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1081 1081 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -1092,9 +1092,9 @@ 1092 1092 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1093 1093 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1094 1094 964 + 1095 1095 === 3.3.6 Set Digital pulse count value === 1096 1096 1097 - 1098 1098 Feature: Set the pulse count value. 1099 1099 1100 1100 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -1102,7 +1102,7 @@ 1102 1102 (% style="color:blue" %)**AT Command: AT+SETCNT** 1103 1103 1104 1104 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1105 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**974 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1106 1106 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1107 1107 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1108 1108 ... ... @@ -1115,15 +1115,15 @@ 1115 1115 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1116 1116 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1117 1117 987 + 1118 1118 === 3.3.7 Set Workmode === 1119 1119 1120 - 1121 1121 Feature: Switch working mode. 1122 1122 1123 1123 (% style="color:blue" %)**AT Command: AT+MOD** 1124 1124 1125 1125 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1126 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**995 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1127 1127 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1128 1128 OK 1129 1129 ))) ... ... @@ -1139,32 +1139,7 @@ 1139 1139 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1140 1140 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1141 1141 1142 -=== 3.3.8 PWM setting === 1143 1143 1144 -Feature: Set the time acquisition unit for PWM input capture. 1145 - 1146 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1147 - 1148 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1149 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1150 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1151 -0(default) 1152 - 1153 -OK 1154 -))) 1155 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)((( 1156 -OK 1157 - 1158 -))) 1159 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK 1160 - 1161 -(% style="color:blue" %)**Downlink Command: 0x0C** 1162 - 1163 -Format: Command Code (0x0C) followed by 1 bytes. 1164 - 1165 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1166 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1167 - 1168 1168 = 4. Battery & Power Consumption = 1169 1169 1170 1170 ... ... @@ -1177,43 +1177,27 @@ 1177 1177 1178 1178 1179 1179 (% class="wikigeneratedid" %) 1180 - **User can change firmware SN50v3-LB to:**1024 +User can change firmware SN50v3-LB to: 1181 1181 1182 1182 * Change Frequency band/ region. 1183 1183 * Update with new features. 1184 1184 * Fix bugs. 1185 1185 1186 - **Firmware and changelog can be downloaded from :****[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**1030 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1187 1187 1188 -**Methods to Update Firmware:** 1189 1189 1190 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1191 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1033 +Methods to Update Firmware: 1192 1192 1035 +* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1036 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1037 + 1193 1193 = 6. FAQ = 1194 1194 1195 1195 == 6.1 Where can i find source code of SN50v3-LB? == 1196 1196 1197 - 1198 1198 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1199 1199 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1200 1200 1201 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1202 - 1203 - 1204 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1205 - 1206 - 1207 -== 6.3 How to put several sensors to a SN50v3-LB? == 1208 - 1209 - 1210 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1211 - 1212 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1213 - 1214 -[[image:image-20230810121434-1.png||height="242" width="656"]] 1215 - 1216 - 1217 1217 = 7. Order Info = 1218 1218 1219 1219 ... ... @@ -1239,7 +1239,6 @@ 1239 1239 1240 1240 = 8. Packing Info = 1241 1241 1242 - 1243 1243 (% style="color:#037691" %)**Package Includes**: 1244 1244 1245 1245 * SN50v3-LB LoRaWAN Generic Node
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.9 KB - Content