Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
<
edited by Bei Jinggeng
on 2025/01/10 15:51
on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 14 added, 0 removed)
- image-20231213102404-1.jpeg
- image-20231231202945-1.png
- image-20231231203148-2.png
- image-20231231203439-3.png
- image-20240103095513-1.jpeg
- image-20240103095714-2.png
- image-20240717113113-1.png
- image-20240717141512-1.jpeg
- image-20240717141528-2.jpeg
- image-20240717145707-3.png
- image-20240717150334-4.png
- image-20240717150948-5.png
- image-20240717152224-6.jpeg
- image-20240924112806-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor Node User Manual 1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Bei - Content
-
... ... @@ -1,10 +1,15 @@ 1 + 2 + 1 1 (% style="text-align:center" %) 2 -[[image:image-202 30515135611-1.jpeg||height="589" width="589"]]4 +[[image:image-20240103095714-2.png]] 3 3 4 4 5 5 6 -**Table of Contents:** 7 7 9 + 10 + 11 +**Table of Contents:** 12 + 8 8 {{toc/}} 9 9 10 10 ... ... @@ -14,20 +14,19 @@ 14 14 15 15 = 1. Introduction = 16 16 17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node == 22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node == 18 18 19 19 20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%) or (% style="color:blue" %)**solar powered + Li-ion battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphonedetection,building automation, andso on.27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 23 23 24 -(% style="color:blue" %)** SN50V3-LB **(%%)has a powerful48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors. 25 25 26 -(% style="color:blue" %)** SN50V3-LB**(%%) has abuilt-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining. 27 27 28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 - 31 31 == 1.2 Features == 32 32 33 33 ... ... @@ -39,7 +39,8 @@ 39 39 * Support wireless OTA update firmware 40 40 * Uplink on periodically 41 41 * Downlink to change configure 42 -* 8500mAh Battery for long term use 46 +* 8500mAh Li/SOCl2 Battery (SN50v3-LB) 47 +* Solar panel + 3000mAh Li-ion battery (SN50v3-LS) 43 43 44 44 == 1.3 Specification == 45 45 ... ... @@ -46,7 +46,7 @@ 46 46 47 47 (% style="color:#037691" %)**Common DC Characteristics:** 48 48 49 -* Supply Voltage: built8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v54 +* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v 50 50 * Operating Temperature: -40 ~~ 85°C 51 51 52 52 (% style="color:#037691" %)**I/O Interface:** ... ... @@ -89,11 +89,10 @@ 89 89 == 1.5 Button & LEDs == 90 90 91 91 92 -[[image: Main.User.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]97 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]] 93 93 94 - 95 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 96 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 99 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 100 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action** 97 97 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 98 98 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 99 99 Meanwhile, BLE module will be active and user can connect via BLE to configure device. ... ... @@ -108,7 +108,7 @@ 108 108 == 1.6 BLE connection == 109 109 110 110 111 -SN50v3-LB supports BLE remote configure. 115 +SN50v3-LB/LS supports BLE remote configure. 112 112 113 113 114 114 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: ... ... @@ -128,18 +128,22 @@ 128 128 129 129 == 1.8 Mechanical == 130 130 135 +=== 1.8.1 for LB version === 131 131 132 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 133 133 134 -[[image: Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]138 +[[image:image-20240924112806-1.png||height="548" width="894"]] 135 135 136 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 137 137 138 138 142 +=== 1.8.2 for LS version === 143 + 144 +[[image:image-20231231203439-3.png||height="385" width="886"]] 145 + 146 + 139 139 == 1.9 Hole Option == 140 140 141 141 142 -SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 150 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 143 143 144 144 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] 145 145 ... ... @@ -146,12 +146,12 @@ 146 146 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]] 147 147 148 148 149 -= 2. Configure SN50v3-LB to connect to LoRaWAN network = 157 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network = 150 150 151 151 == 2.1 How it works == 152 152 153 153 154 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 162 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 155 155 156 156 157 157 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -162,9 +162,9 @@ 162 162 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 163 163 164 164 165 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. 173 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS. 166 166 167 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below: 175 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below: 168 168 169 169 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]] 170 170 ... ... @@ -192,12 +192,10 @@ 192 192 193 193 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 194 194 203 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS 195 195 196 - (%style="color:blue"%)**Step2:**(%%) Activate SN50v3-LB205 +Press the button for 5 seconds to activate the SN50v3-LB/LS. 197 197 198 - 199 -Press the button for 5 seconds to activate the SN50v3-LB. 200 - 201 201 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 202 202 203 203 After join success, it will start to upload messages to TTN and you can see the messages in the panel. ... ... @@ -208,13 +208,13 @@ 208 208 === 2.3.1 Device Status, FPORT~=5 === 209 209 210 210 211 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 217 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server. 212 212 213 213 The Payload format is as below. 214 214 215 215 216 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:510px" %)217 -|(% colspan="6" style="background-color:# d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**222 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 223 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)** 218 218 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 219 219 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 220 220 ... ... @@ -221,7 +221,7 @@ 221 221 Example parse in TTNv3 222 222 223 223 224 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 230 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C 225 225 226 226 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 227 227 ... ... @@ -277,7 +277,7 @@ 277 277 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 278 278 279 279 280 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 286 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes. 281 281 282 282 For example: 283 283 ... ... @@ -286,7 +286,7 @@ 286 286 287 287 (% style="color:red" %) **Important Notice:** 288 288 289 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 295 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload. 290 290 291 291 2. All modes share the same Payload Explanation from HERE. 292 292 ... ... @@ -298,8 +298,8 @@ 298 298 299 299 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 300 300 301 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)302 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**307 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 308 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2** 303 303 |Value|Bat|(% style="width:191px" %)((( 304 304 Temperature(DS18B20)(PC13) 305 305 )))|(% style="width:78px" %)((( ... ... @@ -320,8 +320,8 @@ 320 320 321 321 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 322 322 323 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)324 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**329 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 330 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2** 325 325 |Value|BAT|(% style="width:196px" %)((( 326 326 Temperature(DS18B20)(PC13) 327 327 )))|(% style="width:87px" %)((( ... ... @@ -350,8 +350,8 @@ 350 350 351 351 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 352 352 353 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)354 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**359 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 360 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2** 355 355 |Value|BAT|(% style="width:183px" %)((( 356 356 Temperature(DS18B20)(PC13) 357 357 )))|(% style="width:173px" %)((( ... ... @@ -385,10 +385,10 @@ 385 385 386 386 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 387 387 388 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)389 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((394 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 395 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 390 390 **Size(bytes)** 391 -)))|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1397 +)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1 392 392 |Value|(% style="width:68px" %)((( 393 393 ADC1(PA4) 394 394 )))|(% style="width:75px" %)((( ... ... @@ -411,8 +411,8 @@ 411 411 412 412 This mode has total 11 bytes. As shown below: 413 413 414 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)415 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**420 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 421 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2** 416 416 |Value|BAT|(% style="width:186px" %)((( 417 417 Temperature1(DS18B20)(PC13) 418 418 )))|(% style="width:82px" %)((( ... ... @@ -452,10 +452,10 @@ 452 452 453 453 Check the response of this command and adjust the value to match the real value for thing. 454 454 455 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)456 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((461 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 462 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 457 457 **Size(bytes)** 458 -)))|=(% style="width: 20px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**4**464 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 198px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 49px;background-color:#4F81BD;color:white" %)**4** 459 459 |Value|BAT|(% style="width:193px" %)((( 460 460 Temperature(DS18B20)(PC13) 461 461 )))|(% style="width:85px" %)((( ... ... @@ -479,8 +479,8 @@ 479 479 480 480 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 481 481 482 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)483 -|=(% style="width: 60px;background-color:# D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**4**488 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 489 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 77px;background-color:#4F81BD;color:white" %)**4** 484 484 |Value|BAT|(% style="width:256px" %)((( 485 485 Temperature(DS18B20)(PC13) 486 486 )))|(% style="width:108px" %)((( ... ... @@ -497,10 +497,10 @@ 497 497 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 498 498 499 499 500 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)501 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((506 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 507 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 502 502 **Size(bytes)** 503 -)))|=(% style="width: 20px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2509 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2 504 504 |Value|BAT|(% style="width:188px" %)((( 505 505 Temperature(DS18B20) 506 506 (PC13) ... ... @@ -516,10 +516,10 @@ 516 516 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 517 517 518 518 519 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)520 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((525 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 526 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 521 521 **Size(bytes)** 522 -)))|=(% style="width: 30px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:70px;background-color:#D9E2F3;color:#0070C0" %)2528 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)2 523 523 |Value|BAT|(% style="width:207px" %)((( 524 524 Temperature(DS18B20) 525 525 (PC13) ... ... @@ -539,10 +539,10 @@ 539 539 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 540 540 541 541 542 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)543 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((548 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 549 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 544 544 **Size(bytes)** 545 -)))|=(% style="width: 20px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)4551 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4 546 546 |Value|BAT|((( 547 547 Temperature 548 548 (DS18B20)(PC13) ... ... @@ -579,19 +579,23 @@ 579 579 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 580 580 581 581 582 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 588 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ==== 583 583 590 + 591 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 592 + 584 584 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 585 585 586 -[[It should be noted when using PWM mode.>> http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/#H2.3.3.12A0PWMMOD]]595 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 587 587 588 588 589 589 ===== 2.3.2.10.a Uplink, PWM input capture ===== 590 590 600 + 591 591 [[image:image-20230817172209-2.png||height="439" width="683"]] 592 592 593 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:690px" %)594 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**603 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %) 604 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2** 595 595 |Value|Bat|(% style="width:191px" %)((( 596 596 Temperature(DS18B20)(PC13) 597 597 )))|(% style="width:78px" %)((( ... ... @@ -598,7 +598,6 @@ 598 598 ADC(PA4) 599 599 )))|(% style="width:135px" %)((( 600 600 PWM_Setting 601 - 602 602 &Digital Interrupt(PA8) 603 603 )))|(% style="width:70px" %)((( 604 604 Pulse period ... ... @@ -611,16 +611,17 @@ 611 611 612 612 When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 613 613 614 -Frequency: 623 +**Frequency:** 615 615 616 616 (% class="MsoNormal" %) 617 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0,**(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 626 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 618 618 619 619 (% class="MsoNormal" %) 620 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1,**(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 629 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 621 621 631 + 622 622 (% class="MsoNormal" %) 623 -Duty cycle: 633 +**Duty cycle:** 624 624 625 625 Duty cycle= Duration of high level/ Pulse period*100 ~(%). 626 626 ... ... @@ -627,8 +627,38 @@ 627 627 [[image:image-20230818092200-1.png||height="344" width="627"]] 628 628 629 629 630 -===== 2.3.2.10.b Downlink, PWM output =====640 +===== 2.3.2.10.b Uplink, PWM output ===== 631 631 642 + 643 +[[image:image-20230817172209-2.png||height="439" width="683"]] 644 + 645 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 646 + 647 +a is the time delay of the output, the unit is ms. 648 + 649 +b is the output frequency, the unit is HZ. 650 + 651 +c is the duty cycle of the output, the unit is %. 652 + 653 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 654 + 655 +aa is the time delay of the output, the unit is ms. 656 + 657 +bb is the output frequency, the unit is HZ. 658 + 659 +cc is the duty cycle of the output, the unit is %. 660 + 661 + 662 +For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 663 + 664 +The oscilloscope displays as follows: 665 + 666 +[[image:image-20231213102404-1.jpeg||height="688" width="821"]] 667 + 668 + 669 +===== 2.3.2.10.c Downlink, PWM output ===== 670 + 671 + 632 632 [[image:image-20230817173800-3.png||height="412" width="685"]] 633 633 634 634 Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** ... ... @@ -644,9 +644,64 @@ 644 644 645 645 The oscilloscope displays as follows: 646 646 647 -[[image:image-20230817173858-5.png||height="6 94" width="921"]]687 +[[image:image-20230817173858-5.png||height="634" width="843"]] 648 648 649 649 690 + 691 +==== 2.3.2.11 MOD~=11 (TEMP117)(Since firmware V1.3.0) ==== 692 + 693 + 694 +In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 695 + 696 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 697 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2** 698 +|Value|Bat|(% style="width:191px" %)((( 699 +Temperature(DS18B20)(PC13) 700 +)))|(% style="width:78px" %)((( 701 +ADC(PA4) 702 +)))|(% style="width:216px" %)((( 703 +Digital in(PB15)&Digital Interrupt(PA8) 704 +)))|(% style="width:308px" %)((( 705 +Temperature 706 + 707 +(TEMP117) 708 +)))|(% style="width:154px" %)((( 709 +Reserved position, meaningless 710 + 711 +(0x0000) 712 +))) 713 + 714 +[[image:image-20240717113113-1.png||height="352" width="793"]] 715 + 716 +Connection: 717 + 718 +[[image:image-20240717141528-2.jpeg||height="430" width="654"]] 719 + 720 + 721 +==== 2.3.2.12 MOD~=12 (Count+SHT31)(Since firmware V1.3.1) ==== 722 + 723 + 724 +This mode has total 11 bytes. As shown below: 725 + 726 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 727 +|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**Size(bytes)**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**4** 728 +|Value|BAT|(% style="width:86px" %)((( 729 + Temperature_SHT31 730 +)))|(% style="width:86px" %)((( 731 +Humidity_SHT31 732 +)))|(% style="width:86px" %)((( 733 + Digital in(PB15) 734 +)))|(% style="width:86px" %)((( 735 +Count(PA8) 736 +))) 737 + 738 +[[image:image-20240717150948-5.png||height="389" width="979"]] 739 + 740 +Wiring example: 741 + 742 +[[image:image-20240717152224-6.jpeg||height="359" width="680"]] 743 + 744 + 650 650 === 2.3.3 Decode payload === 651 651 652 652 ... ... @@ -656,13 +656,13 @@ 656 656 657 657 The payload decoder function for TTN V3 are here: 658 658 659 -SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 754 +SN50v3-LB/LS TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 660 660 661 661 662 662 ==== 2.3.3.1 Battery Info ==== 663 663 664 664 665 -Check the battery voltage for SN50v3-LB. 760 +Check the battery voltage for SN50v3-LB/LS. 666 666 667 667 Ex1: 0x0B45 = 2885mV 668 668 ... ... @@ -724,10 +724,12 @@ 724 724 725 725 [[image:image-20230811113449-1.png||height="370" width="608"]] 726 726 822 + 823 + 727 727 ==== 2.3.3.5 Digital Interrupt ==== 728 728 729 729 730 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 827 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server. 731 731 732 732 (% style="color:blue" %)** Interrupt connection method:** 733 733 ... ... @@ -740,18 +740,18 @@ 740 740 741 741 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 742 742 743 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 840 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window. 744 744 745 745 746 746 (% style="color:blue" %)**Below is the installation example:** 747 747 748 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 845 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows: 749 749 750 750 * ((( 751 -One pin to SN50v3-LB's PA8 pin 848 +One pin to SN50v3-LB/LS's PA8 pin 752 752 ))) 753 753 * ((( 754 -The other pin to SN50v3-LB's VDD pin 851 +The other pin to SN50v3-LB/LS's VDD pin 755 755 ))) 756 756 757 757 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -787,7 +787,7 @@ 787 787 788 788 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 789 789 790 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 887 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.** 791 791 792 792 793 793 Below is the connection to SHT20/ SHT31. The connection is as below: ... ... @@ -821,7 +821,7 @@ 821 821 822 822 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 823 823 824 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 921 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 825 825 826 826 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 827 827 ... ... @@ -830,7 +830,7 @@ 830 830 [[image:image-20230512173903-6.png||height="596" width="715"]] 831 831 832 832 833 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 930 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 834 834 835 835 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 836 836 ... ... @@ -842,13 +842,13 @@ 842 842 ==== 2.3.3.9 Battery Output - BAT pin ==== 843 843 844 844 845 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 942 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon. 846 846 847 847 848 848 ==== 2.3.3.10 +5V Output ==== 849 849 850 850 851 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 948 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 852 852 853 853 The 5V output time can be controlled by AT Command. 854 854 ... ... @@ -887,8 +887,15 @@ 887 887 ))) 888 888 * ((( 889 889 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 987 +))) 988 +* ((( 989 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 890 890 891 - 991 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 992 + 993 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used. 994 + 995 +b) If the output duration is more than 30 seconds, better to use external power source. 892 892 ))) 893 893 894 894 ==== 2.3.3.13 Working MOD ==== ... ... @@ -924,17 +924,17 @@ 924 924 == 2.5 Frequency Plans == 925 925 926 926 927 -The SN50v3-LB uses OTAA mode and below frequency plans by default. Ifuserwanttouseit withdifferent frequencyplan, pleaserefer theATcommandsets.1031 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country. 928 928 929 929 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 930 930 931 931 932 -= 3. Configure SN50v3-LB = 1036 += 3. Configure SN50v3-LB/LS = 933 933 934 934 == 3.1 Configure Methods == 935 935 936 936 937 -SN50v3-LB supports below configure method: 1041 +SN50v3-LB/LS supports below configure method: 938 938 939 939 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 940 940 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. ... ... @@ -953,10 +953,10 @@ 953 953 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 954 954 955 955 956 -== 3.3 Commands special design for SN50v3-LB == 1060 +== 3.3 Commands special design for SN50v3-LB/LS == 957 957 958 958 959 -These commands only valid for SN50v3-LB, as below: 1063 +These commands only valid for SN50v3-LB/LS, as below: 960 960 961 961 962 962 === 3.3.1 Set Transmit Interval Time === ... ... @@ -967,7 +967,7 @@ 967 967 (% style="color:blue" %)**AT Command: AT+TDC** 968 968 969 969 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 970 -|=(% style="width: 156px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**1074 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response** 971 971 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 972 972 30000 973 973 OK ... ... @@ -1000,41 +1000,45 @@ 1000 1000 === 3.3.3 Set Interrupt Mode === 1001 1001 1002 1002 1003 -Feature, Set Interrupt mode for GPIO_EXIT.1107 +Feature, Set Interrupt mode for PB14, PB15, PA4. 1004 1004 1005 - (%style="color:blue"%)**ATCommand:AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**1109 +Before using the interrupt function of the **INT** pin, users can set the interrupt triggering mode as required. 1006 1006 1007 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1008 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1009 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1010 -0 1011 -OK 1012 -the mode is 0 =Disable Interrupt 1013 -))) 1014 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)((( 1015 -Set Transmit Interval 1016 -0. (Disable Interrupt), 1017 -~1. (Trigger by rising and falling edge) 1018 -2. (Trigger by falling edge) 1019 -3. (Trigger by rising edge) 1020 -)))|(% style="width:157px" %)OK 1021 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 1022 -Set Transmit Interval 1023 -trigger by rising edge. 1024 -)))|(% style="width:157px" %)OK 1025 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK 1111 +(% style="color:#037691" %)**AT Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**AT+INTMODx** 1026 1026 1027 -(% style="color: blue" %)**Downlink Command: 0x06**1113 +(% style="color:#4472c4" %)**AT+INTMODx:** 1028 1028 1115 +* (% style="color:#4472c4" %)**AT+INTMOD1 **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PB14**(%%) pin. 1116 +* (% style="color:#4472c4" %)**AT+INTMOD2 **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PB15**(%%) pin. 1117 +* (% style="color:#4472c4" %)**AT+INTMOD3 **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PA4**(%%) pin. 1118 + 1119 +**Parameter setting:** 1120 + 1121 +* **0:** Disable Interrupt 1122 +* **1:** Trigger by rising and falling edge 1123 +* **2:** Trigger by falling edge 1124 +* **3: **Trigger by rising edge 1125 + 1126 +**Example:** 1127 + 1128 +* AT+INTMOD1=0 ~/~/Disable the PB14 pin interrupt function 1129 +* AT+INTMOD2=2 ~/~/Set the interrupt of the PB15 pin to be triggered by the falling edge 1130 +* AT+INTMOD3=3 ~/~/Set the interrupt of the PA4 pin to be triggered by the rising edge 1131 + 1132 +(% style="color:#037691" %)**Downlink Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**0x06 00 aa bb** 1133 + 1029 1029 Format: Command Code (0x06) followed by 3 bytes. 1030 1030 1031 - Thismeanshat theinterrupt modeoftheendnodeis set to 0x000003=3(risingedgetrigger),andthetypeis06.1136 +(% style="color:#4472c4" %)**aa:**(%%) Set the corresponding pin. ((% style="background-color:yellow" %)**00**(%%): PB14 Pin; (% style="background-color:yellow" %)**01**(%%)**: **PB15 Pin; (% style="background-color:yellow" %)**02**(%%): PA4 Pin.) 1032 1032 1033 -* Example 1: Downlink Payload: 06000000 **~-~-->** AT+INTMOD1=0 1034 -* Example 2: Downlink Payload: 06000003 **~-~-->** AT+INTMOD1=3 1035 -* Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 1036 -* Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 1138 +(% style="color:#4472c4" %)**bb: **(%%)Set interrupt mode. ((% style="background-color:yellow" %)**00**(%%) Disable, (% style="background-color:yellow" %)**01**(%%) falling or rising, (% style="background-color:yellow" %)**02**(%%) falling, (% style="background-color:yellow" %)**03**(%%) rising) 1037 1037 1140 +**Example:** 1141 + 1142 +* Downlink Payload: **06 00 00 01 **~/~/ Equal to AT+INTMOD1=1 1143 +* Downlink Payload: **06 00 01 02 **~/~/ Equal to AT+INTMOD2=2 1144 +* Downlink Payload: **06 00 02 03 **~/~/ Equal to AT+INTMOD3=3 1145 + 1038 1038 === 3.3.4 Set Power Output Duration === 1039 1039 1040 1040 ... ... @@ -1049,7 +1049,7 @@ 1049 1049 (% style="color:blue" %)**AT Command: AT+5VT** 1050 1050 1051 1051 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1052 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1160 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1053 1053 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1054 1054 500(default) 1055 1055 OK ... ... @@ -1075,9 +1075,9 @@ 1075 1075 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1076 1076 1077 1077 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1078 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1186 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1079 1079 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1080 -|(% style="width:154px" %)AT+WEIGAP= ?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)1188 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1081 1081 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 1082 1082 1083 1083 (% style="color:blue" %)**Downlink Command: 0x08** ... ... @@ -1101,8 +1101,8 @@ 1101 1101 1102 1102 (% style="color:blue" %)**AT Command: AT+SETCNT** 1103 1103 1104 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:510px" %)1105 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1212 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1213 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1106 1106 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1107 1107 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1108 1108 ... ... @@ -1122,8 +1122,8 @@ 1122 1122 1123 1123 (% style="color:blue" %)**AT Command: AT+MOD** 1124 1124 1125 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:510px" %)1126 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1233 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1234 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1127 1127 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1128 1128 OK 1129 1129 ))) ... ... @@ -1141,22 +1141,22 @@ 1141 1141 1142 1142 === 3.3.8 PWM setting === 1143 1143 1252 + 1144 1144 Feature: Set the time acquisition unit for PWM input capture. 1145 1145 1146 1146 (% style="color:blue" %)**AT Command: AT+PWMSET** 1147 1147 1148 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:510px" %)1149 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width:197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1150 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width: 196px" %)0|(% style="width:157px" %)(((1257 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1258 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response** 1259 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1151 1151 0(default) 1152 - 1153 1153 OK 1154 1154 ))) 1155 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width: 196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)(((1263 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1156 1156 OK 1157 1157 1158 1158 ))) 1159 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width: 196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK1267 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1160 1160 1161 1161 (% style="color:blue" %)**Downlink Command: 0x0C** 1162 1162 ... ... @@ -1165,11 +1165,75 @@ 1165 1165 * Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1166 1166 * Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1167 1167 1168 - = 4. Battery&PowerConsumption=1276 +**Feature: Set PWM output time, output frequency and output duty cycle.** 1169 1169 1278 +(% style="color:blue" %)**AT Command: AT+PWMOUT** 1170 1170 1171 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1280 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1281 +|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response** 1282 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1283 +0,0,0(default) 1284 +OK 1285 +))) 1286 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1287 +OK 1288 + 1289 +))) 1290 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1291 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1172 1172 1293 + 1294 +)))|(% style="width:137px" %)((( 1295 +OK 1296 +))) 1297 + 1298 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1299 +|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters** 1300 +|(% colspan="1" rowspan="3" style="width:155px" %)((( 1301 +AT+PWMOUT=a,b,c 1302 + 1303 + 1304 +)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1305 +Set PWM output time, output frequency and output duty cycle. 1306 + 1307 +((( 1308 + 1309 +))) 1310 + 1311 +((( 1312 + 1313 +))) 1314 +)))|(% style="width:242px" %)((( 1315 +a: Output time (unit: seconds) 1316 +The value ranges from 0 to 65535. 1317 +When a=65535, PWM will always output. 1318 +))) 1319 +|(% style="width:242px" %)((( 1320 +b: Output frequency (unit: HZ) 1321 + 1322 +range 5~~100000HZ 1323 +))) 1324 +|(% style="width:242px" %)((( 1325 +c: Output duty cycle (unit: %) 1326 +The value ranges from 0 to 100. 1327 +))) 1328 + 1329 +(% style="color:blue" %)**Downlink Command: 0x0B** 1330 + 1331 +Format: Command Code (0x0B) followed by 6 bytes. 1332 + 1333 +0B + Output frequency (3bytes)+ Output duty cycle (1bytes)+Output time (2bytes) 1334 + 1335 +Downlink payload:0B bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1336 + 1337 +* Example 1: Downlink Payload: 0B 0003E8 32 0005 **~-~-->** AT+PWMOUT=5,1000,50 1338 +* Example 2: Downlink Payload: 0B 0007D0 3C 000A **~-~-->** AT+PWMOUT=10,2000,60 1339 + 1340 += 4. Battery & Power Cons = 1341 + 1342 + 1343 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace. 1344 + 1173 1173 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 1174 1174 1175 1175 ... ... @@ -1177,7 +1177,7 @@ 1177 1177 1178 1178 1179 1179 (% class="wikigeneratedid" %) 1180 -**User can change firmware SN50v3-LB to:** 1352 +**User can change firmware SN50v3-LB/LS to:** 1181 1181 1182 1182 * Change Frequency band/ region. 1183 1183 * Update with new features. ... ... @@ -1190,24 +1190,42 @@ 1190 1190 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1191 1191 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1192 1192 1193 -= 6. FAQ=1365 += 6. Developer Guide = 1194 1194 1195 - ==6.1Where can i find source codeofSN50v3-LB? ==1367 +SN50v3 is an open source project, developer can use compile their firmware for customized applications. User can get the source code from: 1196 1196 1369 +* ((( 1370 +Software Source Code: [[Releases · dragino/SN50v3 (github.com)>>url:https://github.com/dragino/SN50v3/releases]] 1371 +))) 1372 +* ((( 1373 +Hardware Design files: **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1374 +))) 1375 +* ((( 1376 +Compile instruction:[[Compile instruction>>https://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LA66%20LoRaWAN%20Module/Compile%20and%20Upload%20Code%20to%20ASR6601%20Platform/]] 1377 +))) 1197 1197 1198 -* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1199 -* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1379 +**~1. If you want to change frequency, modify the Preprocessor Symbols.** 1200 1200 1201 - == 6.2 Howto generatePWMOutputinSN50v3-LB? ==1381 +For example, change EU868 to US915 1202 1202 1383 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656318662202-530.png?rev=1.1||alt="1656318662202-530.png"]] 1203 1203 1385 +**2. Compile and build** 1386 + 1387 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627163212-17.png?rev=1.1||alt="image-20220627163212-17.png"]] 1388 + 1389 += 7. FAQ = 1390 + 1391 +== 7.1 How to generate PWM Output in SN50v3-LB/LS? == 1392 + 1393 + 1204 1204 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1205 1205 1206 1206 1207 -== 6.3How to put several sensors to a SN50v3-LB? ==1397 +== 7.2 How to put several sensors to a SN50v3-LB/LS? == 1208 1208 1209 1209 1210 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1400 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1211 1211 1212 1212 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1213 1213 ... ... @@ -1214,10 +1214,10 @@ 1214 1214 [[image:image-20230810121434-1.png||height="242" width="656"]] 1215 1215 1216 1216 1217 -= 7. Order Info =1407 += 8. Order Info = 1218 1218 1219 1219 1220 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** 1410 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY** 1221 1221 1222 1222 (% style="color:red" %)**XX**(%%): The default frequency band 1223 1223 ... ... @@ -1237,12 +1237,12 @@ 1237 1237 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1238 1238 * (% style="color:red" %)**NH**(%%): No Hole 1239 1239 1240 -= 8. Packing Info =1430 += 9. Packing Info = 1241 1241 1242 1242 1243 1243 (% style="color:#037691" %)**Package Includes**: 1244 1244 1245 -* SN50v3-LB LoRaWAN Generic Node 1435 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node 1246 1246 1247 1247 (% style="color:#037691" %)**Dimension and weight**: 1248 1248 ... ... @@ -1251,7 +1251,7 @@ 1251 1251 * Package Size / pcs : cm 1252 1252 * Weight / pcs : g 1253 1253 1254 -= 9. Support =1444 += 10. Support = 1255 1255 1256 1256 1257 1257 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +35.4 KB - Content
- image-20231231203439-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.6 KB - Content
- image-20240103095513-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +577.4 KB - Content
- image-20240103095714-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +230.1 KB - Content
- image-20240717113113-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +34.0 KB - Content
- image-20240717141512-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.8 KB - Content
- image-20240717141528-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +234.2 KB - Content
- image-20240717145707-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +39.8 KB - Content
- image-20240717150334-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.6 KB - Content
- image-20240717150948-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.3 KB - Content
- image-20240717152224-6.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +238.1 KB - Content
- image-20240924112806-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +140.2 KB - Content