Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 20 removed)
- image-20230513111203-7.png
- image-20230513111231-8.png
- image-20230513111255-9.png
- image-20230513134006-1.png
- image-20230515135611-1.jpeg
- image-20230610162852-1.png
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor NodeUser Manual1 +SN50v3-LB User Manual - Content
-
... ... @@ -1,5 +1,4 @@ 1 -(% style="text-align:center" %) 2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 1 +[[image:image-20230511201248-1.png||height="403" width="489"]] 3 3 4 4 5 5 ... ... @@ -16,21 +16,23 @@ 16 16 17 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 18 18 19 - 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 20 + 22 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 23 + 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 26 + 26 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 27 27 29 + 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 30 31 31 == 1.2 Features == 32 32 33 - 34 34 * LoRaWAN 1.0.3 Class A 35 35 * Ultra-low power consumption 36 36 * Open-Source hardware/software ... ... @@ -43,7 +43,6 @@ 43 43 44 44 == 1.3 Specification == 45 45 46 - 47 47 (% style="color:#037691" %)**Common DC Characteristics:** 48 48 49 49 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -80,7 +80,6 @@ 80 80 81 81 == 1.4 Sleep mode and working mode == 82 82 83 - 84 84 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 85 85 86 86 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -123,7 +123,7 @@ 123 123 == 1.7 Pin Definitions == 124 124 125 125 126 -[[image:image-20230 610163213-1.png||height="404" width="699"]]125 +[[image:image-20230511203450-2.png||height="443" width="785"]] 127 127 128 128 129 129 == 1.8 Mechanical == ... ... @@ -136,9 +136,8 @@ 136 136 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 137 137 138 138 139 -== 1.9Hole Option ==138 +== Hole Option == 140 140 141 - 142 142 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 143 143 144 144 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -151,7 +151,7 @@ 151 151 == 2.1 How it works == 152 152 153 153 154 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S N50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 155 155 156 156 157 157 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -159,7 +159,7 @@ 159 159 160 160 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 161 161 162 -The LPS8 v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 163 163 164 164 165 165 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -208,7 +208,7 @@ 208 208 === 2.3.1 Device Status, FPORT~=5 === 209 209 210 210 211 -Users can use the downlink command(**0x26 01**) to ask SN50v3 -LBto send device configure detail, include device configure status. SN50v3-LBwill uplink a payload via FPort=5 to server.209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 212 212 213 213 The Payload format is as below. 214 214 ... ... @@ -216,44 +216,44 @@ 216 216 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 217 217 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 218 218 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 219 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 220 220 221 221 Example parse in TTNv3 222 222 223 223 224 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3 -LB, this value is 0x1C222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 225 225 226 226 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 227 227 228 228 (% style="color:#037691" %)**Frequency Band**: 229 229 230 -0x01: EU868 228 +*0x01: EU868 231 231 232 -0x02: US915 230 +*0x02: US915 233 233 234 -0x03: IN865 232 +*0x03: IN865 235 235 236 -0x04: AU915 234 +*0x04: AU915 237 237 238 -0x05: KZ865 236 +*0x05: KZ865 239 239 240 -0x06: RU864 238 +*0x06: RU864 241 241 242 -0x07: AS923 240 +*0x07: AS923 243 243 244 -0x08: AS923-1 242 +*0x08: AS923-1 245 245 246 -0x09: AS923-2 244 +*0x09: AS923-2 247 247 248 -0x0a: AS923-3 246 +*0x0a: AS923-3 249 249 250 -0x0b: CN470 248 +*0x0b: CN470 251 251 252 -0x0c: EU433 250 +*0x0c: EU433 253 253 254 -0x0d: KR920 252 +*0x0d: KR920 255 255 256 -0x0e: MA869 254 +*0x0e: MA869 257 257 258 258 259 259 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -277,199 +277,186 @@ 277 277 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 278 278 279 279 280 -SN50v3 -LBhas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command(% style="color:blue" %)**AT+MOD**(%%)to set SN50v3-LBto different working modes.278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 281 281 282 282 For example: 283 283 284 - (% style="color:blue" %)**AT+MOD=2 **(%%)282 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 285 285 286 286 287 287 (% style="color:red" %) **Important Notice:** 288 288 289 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 288 +1. All modes share the same Payload Explanation from HERE. 289 +1. By default, the device will send an uplink message every 20 minutes. 290 290 291 -2. All modes share the same Payload Explanation from HERE. 292 - 293 -3. By default, the device will send an uplink message every 20 minutes. 294 - 295 - 296 296 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 297 297 298 - 299 299 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 300 300 301 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 302 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 303 -|Value|Bat|(% style="width:191px" %)((( 304 -Temperature(DS18B20)(PC13) 305 -)))|(% style="width:78px" %)((( 306 -ADC(PA4) 295 +|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2** 296 +|**Value**|Bat|((( 297 +Temperature(DS18B20) 298 + 299 +(PC13) 300 +)))|((( 301 +ADC 302 + 303 +(PA4) 307 307 )))|(% style="width:216px" %)((( 308 -Digital in(PB15)&Digital Interrupt(PA8) 309 -)))|(% style="width:308px" %)((( 310 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 311 -)))|(% style="width:154px" %)((( 312 -Humidity(SHT20 or SHT31) 313 -))) 305 +Digital in & Digital Interrupt 314 314 307 + 308 +)))|(% style="width:342px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|(% style="width:171px" %)Humidity(SHT20 or SHT31) 309 + 315 315 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 316 316 317 317 318 318 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 319 319 320 - 321 321 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 322 322 323 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 324 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 325 -|Value|BAT|(% style="width:196px" %)((( 326 -Temperature(DS18B20)(PC13) 327 -)))|(% style="width:87px" %)((( 328 -ADC(PA4) 329 -)))|(% style="width:189px" %)((( 330 -Digital in(PB15) & Digital Interrupt(PA8) 331 -)))|(% style="width:208px" %)((( 332 -Distance measure by: 1) LIDAR-Lite V3HP 333 -Or 2) Ultrasonic Sensor 334 -)))|(% style="width:117px" %)Reserved 317 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 318 +|**Value**|BAT|((( 319 +Temperature(DS18B20) 320 +)))|ADC|Digital in & Digital Interrupt|((( 321 +Distance measure by: 322 +1) LIDAR-Lite V3HP 323 +Or 324 +2) Ultrasonic Sensor 325 +)))|Reserved 335 335 336 336 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 337 337 329 +**Connection of LIDAR-Lite V3HP:** 338 338 339 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 340 - 341 341 [[image:image-20230512173758-5.png||height="563" width="712"]] 342 342 333 +**Connection to Ultrasonic Sensor:** 343 343 344 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 345 - 346 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 347 - 348 348 [[image:image-20230512173903-6.png||height="596" width="715"]] 349 349 350 - 351 351 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 352 352 353 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 354 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 355 -|Value|BAT|(% style="width:183px" %)((( 356 -Temperature(DS18B20)(PC13) 357 -)))|(% style="width:173px" %)((( 358 -Digital in(PB15) & Digital Interrupt(PA8) 359 -)))|(% style="width:84px" %)((( 360 -ADC(PA4) 361 -)))|(% style="width:323px" %)((( 339 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2** 340 +|**Value**|BAT|((( 341 +Temperature(DS18B20) 342 +)))|Digital in & Digital Interrupt|ADC|((( 362 362 Distance measure by:1)TF-Mini plus LiDAR 363 -Or 2) TF-Luna LiDAR 364 -)))|(% style="width:188px" %)Distance signal strength 344 +Or 345 +2) TF-Luna LiDAR 346 +)))|Distance signal strength 365 365 366 366 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 367 367 368 - 369 369 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 370 370 371 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**352 +Need to remove R3 and R4 resistors to get low power. 372 372 373 373 [[image:image-20230512180609-7.png||height="555" width="802"]] 374 374 375 - 376 376 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 377 377 378 - (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**358 +Need to remove R3 and R4 resistors to get low power. 379 379 380 -[[image:i mage-20230610170047-1.png||height="452" width="799"]]360 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]] 381 381 362 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption. 382 382 364 + 383 383 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 384 384 385 - 386 386 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 387 387 388 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 389 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 369 +|=((( 390 390 **Size(bytes)** 391 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 392 -|Value|(% style="width:68px" %)((( 393 -ADC1(PA4) 371 +)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 318px;" %)2|=(% style="width: 172px;" %)2|=1 372 +|**Value**|(% style="width:68px" %)((( 373 +ADC 374 + 375 +(PA0) 394 394 )))|(% style="width:75px" %)((( 395 -ADC2(PA5) 396 -)))|((( 397 -ADC3(PA8) 398 -)))|((( 399 -Digital Interrupt(PB15) 400 -)))|(% style="width:304px" %)((( 401 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 402 -)))|(% style="width:163px" %)((( 403 -Humidity(SHT20 or SHT31) 404 -)))|(% style="width:53px" %)Bat 377 +ADC2 405 405 406 -[[image:image-20230513110214-6.png]] 379 +(PA1) 380 +)))|ADC3 (PA4)|((( 381 +Digital in(PA12)&Digital Interrupt1(PB14) 382 +)))|(% style="width:318px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|(% style="width:172px" %)Humidity(SHT20 or SHT31)|Bat 407 407 384 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]] 408 408 386 + 409 409 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ==== 410 410 389 +[[image:image-20230512170701-3.png||height="565" width="743"]] 411 411 412 412 This mode has total 11 bytes. As shown below: 413 413 414 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 415 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 416 -|Value|BAT|(% style="width:186px" %)((( 417 -Temperature1(DS18B20)(PC13) 393 +(% style="width:1017px" %) 394 +|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2** 395 +|**Value**|BAT|(% style="width:186px" %)((( 396 +Temperature1(DS18B20) 397 +(PC13) 418 418 )))|(% style="width:82px" %)((( 419 -ADC(PA4) 399 +ADC 400 + 401 +(PA4) 420 420 )))|(% style="width:210px" %)((( 421 -Digital in(PB15) & Digital Interrupt(PA8) 403 +Digital in & Digital Interrupt 404 + 405 +(PB15) & (PA8) 422 422 )))|(% style="width:191px" %)Temperature2(DS18B20) 423 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 407 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 408 +(PB8) 424 424 425 425 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 426 426 427 427 428 -[[image:image-20230513134006-1.png||height="559" width="736"]] 429 - 430 - 431 431 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 432 432 433 - 434 434 [[image:image-20230512164658-2.png||height="532" width="729"]] 435 435 436 436 Each HX711 need to be calibrated before used. User need to do below two steps: 437 437 438 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%)to calibrate to Zero gram.439 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%)to adjust the Calibration Factor.419 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 420 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 440 440 1. ((( 441 441 Weight has 4 bytes, the unit is g. 442 - 443 - 444 - 445 445 ))) 446 446 447 447 For example: 448 448 449 - (% style="color:blue" %)**AT+GETSENSORVALUE =0**427 +**AT+GETSENSORVALUE =0** 450 450 451 451 Response: Weight is 401 g 452 452 453 453 Check the response of this command and adjust the value to match the real value for thing. 454 454 455 -(% border="1" cellspacing="4" style="background-color:#f2f2f2;width:520px" %)456 -|=( % style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((433 +(% style="width:982px" %) 434 +|=((( 457 457 **Size(bytes)** 458 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 459 -|Value|BAT|(% style="width:193px" %)((( 460 -Temperature(DS18B20)(PC13) 461 -)))|(% style="width:85px" %)((( 462 -ADC(PA4) 463 -)))|(% style="width:186px" %)((( 464 -Digital in(PB15) & Digital Interrupt(PA8) 465 -)))|(% style="width:100px" %)Weight 436 +)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4** 437 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(% style="width:282px" %)((( 438 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 466 466 440 +(PC13) 441 + 442 + 443 +)))|(% style="width:119px" %)((( 444 +[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]] 445 + 446 +(PA4) 447 +)))|(% style="width:279px" %)((( 448 +[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]] 449 + 450 +(PB15) & (PA8) 451 +)))|(% style="width:106px" %)Weight 452 + 467 467 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 468 468 469 469 470 470 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 471 471 472 - 473 473 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 474 474 475 475 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -476,180 +476,86 @@ 476 476 477 477 [[image:image-20230512181814-9.png||height="543" width="697"]] 478 478 464 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen. 479 479 480 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 466 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4** 467 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|((( 468 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 469 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count 481 481 482 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 483 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 484 -|Value|BAT|(% style="width:256px" %)((( 485 -Temperature(DS18B20)(PC13) 486 -)))|(% style="width:108px" %)((( 487 -ADC(PA4) 488 -)))|(% style="width:126px" %)((( 489 -Digital in(PB15) 490 -)))|(% style="width:145px" %)((( 491 -Count(PA8) 492 -))) 493 - 494 494 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 495 495 496 496 497 497 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 498 498 476 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]] 499 499 500 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 501 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 478 +|=((( 502 502 **Size(bytes)** 503 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 504 -|Value|BAT|(% style="width:188px" %)((( 505 -Temperature(DS18B20) 506 -(PC13) 507 -)))|(% style="width:83px" %)((( 508 -ADC(PA5) 509 -)))|(% style="width:184px" %)((( 510 -Digital Interrupt1(PA8) 511 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved 480 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2 481 +|**Value**|BAT|Temperature(DS18B20)|ADC|((( 482 +Digital in(PA12)&Digital Interrupt1(PB14) 483 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved 512 512 513 -[[image:image-20230513111203-7.png||height="324" width="975"]] 514 - 515 - 516 516 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 517 517 518 - 519 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 520 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 487 +|=((( 521 521 **Size(bytes)** 522 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 523 -|Value|BAT|(% style="width:207px" %)((( 524 -Temperature(DS18B20) 525 -(PC13) 526 -)))|(% style="width:94px" %)((( 527 -ADC1(PA4) 528 -)))|(% style="width:198px" %)((( 529 -Digital Interrupt(PB15) 530 -)))|(% style="width:84px" %)((( 531 -ADC2(PA5) 532 -)))|(% style="width:82px" %)((( 533 -ADC3(PA8) 489 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2 490 +|**Value**|BAT|Temperature(DS18B20)|((( 491 +ADC1(PA0) 492 +)))|((( 493 +Digital in 494 +& Digital Interrupt(PB14) 495 +)))|((( 496 +ADC2(PA1) 497 +)))|((( 498 +ADC3(PA4) 534 534 ))) 535 535 536 -[[image:image-202 30513111231-8.png||height="335" width="900"]]501 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]] 537 537 538 538 539 539 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 540 540 541 - 542 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 543 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 506 +|=((( 544 544 **Size(bytes)** 545 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 546 -|Value|BAT|((( 547 -Temperature 548 -(DS18B20)(PC13) 508 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4 509 +|**Value**|BAT|((( 510 +Temperature1(PB3) 549 549 )))|((( 550 -Temperature2 551 -(DS18B20)(PB9) 512 +Temperature2(PA9) 552 552 )))|((( 553 -Digital Interrupt 554 -(PB15) 555 -)))|(% style="width:193px" %)((( 556 -Temperature3 557 -(DS18B20)(PB8) 558 -)))|(% style="width:78px" %)((( 559 -Count1(PA8) 560 -)))|(% style="width:78px" %)((( 561 -Count2(PA4) 514 +Digital in 515 +& Digital Interrupt(PA4) 516 +)))|((( 517 +Temperature3(PA10) 518 +)))|((( 519 +Count1(PB14) 520 +)))|((( 521 +Count2(PB15) 562 562 ))) 563 563 564 -[[image:image-202 30513111255-9.png||height="341"width="899"]]524 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]] 565 565 566 - (% style="color:blue" %)**The newly added AT command is issued correspondingly:**526 +**The newly added AT command is issued correspondingly:** 567 567 568 - (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)pin: Corresponding downlink:(% style="color:#037691" %)**06 00 00 xx**528 +**~ AT+INTMOD1** ** PB14** pin: Corresponding downlink: **06 00 00 xx** 569 569 570 - (% style="color:#037691" %)** AT+INTMOD2PA4**(%%)pin: Corresponding downlink:(% style="color:#037691"%)**060001 xx**530 +**~ AT+INTMOD2** **PB15** pin: Corresponding downlink:** 06 00 01 xx** 571 571 572 - (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)pin: Corresponding downlink:(% style="color:#037691" %)** 06 00 02 xx**532 +**~ AT+INTMOD3** **PA4** pin: Corresponding downlink: ** 06 00 02 xx** 573 573 534 +**AT+SETCNT=aa,bb** 574 574 575 - (%style="color:blue"%)**AT+SETCNT=aa,bb**536 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb 576 576 577 -When AA is 1, set the count of PA8pin to BB Corresponding downlink:09 01bb bb bb bb538 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb 578 578 579 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 580 580 581 581 582 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 583 - 584 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 585 - 586 -[[It should be noted when using PWM mode.>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/#H2.3.3.12A0PWMMOD]] 587 - 588 - 589 -===== 2.3.2.10.a Uplink, PWM input capture ===== 590 - 591 -[[image:image-20230817172209-2.png||height="439" width="683"]] 592 - 593 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 594 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 595 -|Value|Bat|(% style="width:191px" %)((( 596 -Temperature(DS18B20)(PC13) 597 -)))|(% style="width:78px" %)((( 598 -ADC(PA4) 599 -)))|(% style="width:135px" %)((( 600 -PWM_Setting 601 - 602 -&Digital Interrupt(PA8) 603 -)))|(% style="width:70px" %)((( 604 -Pulse period 605 -)))|(% style="width:89px" %)((( 606 -Duration of high level 607 -))) 608 - 609 -[[image:image-20230817170702-1.png||height="161" width="1044"]] 610 - 611 - 612 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 613 - 614 -Frequency: 615 - 616 -(% class="MsoNormal" %) 617 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0,**(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 618 - 619 -(% class="MsoNormal" %) 620 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1,**(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 621 - 622 -(% class="MsoNormal" %) 623 -Duty cycle: 624 - 625 -Duty cycle= Duration of high level/ Pulse period*100 ~(%). 626 - 627 -[[image:image-20230818092200-1.png||height="344" width="627"]] 628 - 629 - 630 -===== 2.3.2.10.b Downlink, PWM output ===== 631 - 632 -[[image:image-20230817173800-3.png||height="412" width="685"]] 633 - 634 -Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 635 - 636 - xx xx xx is the output frequency, the unit is HZ. 637 - 638 - yy is the duty cycle of the output, the unit is %. 639 - 640 - zz zz is the time delay of the output, the unit is ms. 641 - 642 - 643 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 644 - 645 -The oscilloscope displays as follows: 646 - 647 -[[image:image-20230817173858-5.png||height="694" width="921"]] 648 - 649 - 650 650 === 2.3.3 Decode payload === 651 651 652 - 653 653 While using TTN V3 network, you can add the payload format to decode the payload. 654 654 655 655 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -656,14 +656,13 @@ 656 656 657 657 The payload decoder function for TTN V3 are here: 658 658 659 -SN50v3 -LBTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]550 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 660 660 661 661 662 662 ==== 2.3.3.1 Battery Info ==== 663 663 555 +Check the battery voltage for SN50v3. 664 664 665 -Check the battery voltage for SN50v3-LB. 666 - 667 667 Ex1: 0x0B45 = 2885mV 668 668 669 669 Ex2: 0x0B49 = 2889mV ... ... @@ -671,18 +671,16 @@ 671 671 672 672 ==== 2.3.3.2 Temperature (DS18B20) ==== 673 673 564 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload. 674 674 675 - If thereis aDS18B20 connectedtoPC13pin. The temperaturewillbeploadedin thepayload.566 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]] 676 676 677 - More DS18B20 cancheckthe [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]568 +**Connection:** 678 678 679 -(% style="color:blue" %)**Connection:** 680 - 681 681 [[image:image-20230512180718-8.png||height="538" width="647"]] 682 682 572 +**Example**: 683 683 684 -(% style="color:blue" %)**Example**: 685 - 686 686 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 687 687 688 688 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -692,7 +692,6 @@ 692 692 693 693 ==== 2.3.3.3 Digital Input ==== 694 694 695 - 696 696 The digital input for pin PB15, 697 697 698 698 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -700,65 +700,51 @@ 700 700 701 701 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %) 702 702 ((( 703 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 704 - 705 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 706 - 707 - 590 +Note:The maximum voltage input supports 3.6V. 708 708 ))) 709 709 593 +(% class="wikigeneratedid" %) 710 710 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 711 711 596 +The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 712 712 713 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 714 - 715 715 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 716 716 717 717 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 718 718 719 719 720 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 721 - 722 - 723 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 724 - 725 -[[image:image-20230811113449-1.png||height="370" width="608"]] 726 - 727 727 ==== 2.3.3.5 Digital Interrupt ==== 728 728 605 +Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 729 729 730 - DigitalInterruptrefers topinPA8, and there are differenttrigger methods. Whenthere is atrigger, the SN50v3-LB will send a packet tothe server.607 +**~ Interrupt connection method:** 731 731 732 - (% style="color:blue"%)** Interrupt connectionmethod:**609 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]] 733 733 734 - [[image:image-20230513105351-5.png||height="147"width="485"]]611 +**Example to use with door sensor :** 735 735 736 - 737 -(% style="color:blue" %)**Example to use with door sensor :** 738 - 739 739 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 740 740 741 741 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 742 742 743 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 v3-LBinterrupt interface to detect the status for the door or window.617 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window. 744 744 619 +**~ Below is the installation example:** 745 745 746 - (%style="color:blue"%)**Belowisthe installationexample:**621 +Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows: 747 747 748 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 749 - 750 750 * ((( 751 -One pin to SN50 v3-LB's PA8pin624 +One pin to LSN50's PB14 pin 752 752 ))) 753 753 * ((( 754 -The other pin to SN50 v3-LB's VDDpin627 +The other pin to LSN50's VCC pin 755 755 ))) 756 756 757 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and P A8will be at the VCC voltage.630 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage. 758 758 759 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%)and(% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.632 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 760 760 761 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v 3/1Mohm = 3uA which can be ignored.634 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored. 762 762 763 763 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]] 764 764 ... ... @@ -768,33 +768,29 @@ 768 768 769 769 The command is: 770 770 771 - (% style="color:blue" %)**AT+INTMOD1=1 **(%%)~/~/644 +**AT+INTMOD=1 **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 772 772 773 773 Below shows some screen captures in TTN V3: 774 774 775 775 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 776 776 650 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 777 777 778 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 779 - 780 780 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 781 781 782 782 783 783 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 784 784 785 - 786 786 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 787 787 788 -We have made an example to show how to use the I2C interface to connect to the SHT20 /SHT31 Temperature and Humidity Sensor.659 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. 789 789 790 - (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/SHT31code in SN50v3-LBwill be a good reference.**661 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference. 791 791 792 - 793 793 Below is the connection to SHT20/ SHT31. The connection is as below: 794 794 795 -[[image:image-202 30610170152-2.png||height="501" width="846"]]665 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]] 796 796 797 - 798 798 The device will be able to get the I2C sensor data now and upload to IoT Server. 799 799 800 800 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] ... ... @@ -812,26 +812,20 @@ 812 812 813 813 ==== 2.3.3.7 Distance Reading ==== 814 814 684 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 815 815 816 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 817 817 818 - 819 819 ==== 2.3.3.8 Ultrasonic Sensor ==== 820 820 821 - 822 822 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 823 823 824 -The SN50 v3-LBdetects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.691 +The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 825 825 826 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 827 - 828 828 The picture below shows the connection: 829 829 830 -[[image:image-20230512173903-6.png||height="596" width="715"]] 831 831 696 +Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 832 832 833 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 834 - 835 835 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 836 836 837 837 **Example:** ... ... @@ -838,62 +838,50 @@ 838 838 839 839 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 840 840 704 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]] 841 841 842 - ==== 2.3.3.9 Battery Output-BATpin==706 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]] 843 843 708 +You can see the serial output in ULT mode as below: 844 844 845 - The BAT pin of SN50v3-LB is connected to the Battery directly.If users want touse BAT pintopower anexternalsensor. User needto makesurethe externalsensor is oflow powerconsumption. Because the BAT pinis alwaysopen. If the externalsensorisof high powerconsumption. thebattery of SN50v3-LB will run out very soon.710 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]] 846 846 712 +**In TTN V3 server:** 847 847 848 - ==== 2.3.3.10+5VOutput===714 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]] 849 849 716 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]] 850 850 851 - SN50v3-LBwill enable+5V outputbeforeallsamplingand disable the +5v after all sampling.718 +==== 2.3.3.9 Battery Output - BAT pin ==== 852 852 853 -The 5 Voutput timecanbecontrolledbyATCommand.720 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 854 854 855 -(% style="color:blue" %)**AT+5VT=1000** 856 856 857 - Meansset 5V valid time to have1000ms.So the real5Voutputwill actually have 1000ms + sampling time for other sensors.723 +==== 2.3.3.10 +5V Output ==== 858 858 859 - Bydefault the**AT+5VT=500**.Ifthe externalsensorwhich require5vand require more time to get stablestate, user canuse this commandtoincrease thepowerON durationforthissensor.725 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 860 860 727 +The 5V output time can be controlled by AT Command. 861 861 862 -= === 2.3.3.11 BH1750Illumination Sensor ====729 +**AT+5VT=1000** 863 863 731 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 864 864 865 - MOD=1support thissensor.Thesensorvalueis in the8^^th^^and9^^th^^bytes.733 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 866 866 867 -[[image:image-20230512172447-4.png||height="416" width="712"]] 868 868 869 869 870 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]737 +==== 2.3.3.11 BH1750 Illumination Sensor ==== 871 871 739 +MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 872 872 873 - ====2.3.3.12PWM MOD====741 +[[image:image-20230512172447-4.png||height="593" width="1015"]] 874 874 743 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]] 875 875 876 -* ((( 877 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 878 -))) 879 -* ((( 880 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 881 -))) 882 882 883 - [[image:image-20230817183249-3.png||height="320"width="417"]]746 +==== 2.3.3.12 Working MOD ==== 884 884 885 -* ((( 886 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 887 -))) 888 -* ((( 889 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/#H3.3.8PWMsetting]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 890 - 891 - 892 -))) 893 - 894 -==== 2.3.3.13 Working MOD ==== 895 - 896 - 897 897 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 898 898 899 899 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -906,10 +906,6 @@ 906 906 * 3: MOD4 907 907 * 4: MOD5 908 908 * 5: MOD6 909 -* 6: MOD7 910 -* 7: MOD8 911 -* 8: MOD9 912 -* 9: MOD10 913 913 914 914 == 2.4 Payload Decoder file == 915 915 ... ... @@ -918,9 +918,10 @@ 918 918 919 919 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 920 920 921 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50 _v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]768 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]] 922 922 923 923 771 + 924 924 == 2.5 Frequency Plans == 925 925 926 926 ... ... @@ -956,7 +956,7 @@ 956 956 == 3.3 Commands special design for SN50v3-LB == 957 957 958 958 959 -These commands only valid for S N50v3-LB, as below:807 +These commands only valid for S31x-LB, as below: 960 960 961 961 962 962 === 3.3.1 Set Transmit Interval Time === ... ... @@ -967,7 +967,7 @@ 967 967 (% style="color:blue" %)**AT Command: AT+TDC** 968 968 969 969 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 970 -|=(% style="width: 156px;background-color:#D9E2F3 ;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**818 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 971 971 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 972 972 30000 973 973 OK ... ... @@ -989,29 +989,28 @@ 989 989 990 990 === 3.3.2 Get Device Status === 991 991 840 +Send a LoRaWAN downlink to ask device send Alarm settings. 992 992 993 - Senda LoRaWANdownlinktosk thedevicetosend its status.842 +(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 994 994 995 - (% style="color:blue"%)**DownlinkPayload:0x2601**844 +Sensor will upload Device Status via FPORT=5. See payload section for detail. 996 996 997 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 998 998 847 +=== 3.3.7 Set Interrupt Mode === 999 999 1000 -=== 3.3.3 Set Interrupt Mode === 1001 1001 1002 - 1003 1003 Feature, Set Interrupt mode for GPIO_EXIT. 1004 1004 1005 -(% style="color:blue" %)**AT Command: AT+INTMOD 1,AT+INTMOD2,AT+INTMOD3**852 +(% style="color:blue" %)**AT Command: AT+INTMOD** 1006 1006 1007 1007 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1008 -|=(% style="width: 15 5px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1009 -|(% style="width:154px" %)AT+INTMOD 1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((855 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 856 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1010 1010 0 1011 1011 OK 1012 1012 the mode is 0 =Disable Interrupt 1013 1013 ))) 1014 -|(% style="width:154px" %)AT+INTMOD 1=2|(% style="width:196px" %)(((861 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 1015 1015 Set Transmit Interval 1016 1016 0. (Disable Interrupt), 1017 1017 ~1. (Trigger by rising and falling edge) ... ... @@ -1018,11 +1018,6 @@ 1018 1018 2. (Trigger by falling edge) 1019 1019 3. (Trigger by rising edge) 1020 1020 )))|(% style="width:157px" %)OK 1021 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 1022 -Set Transmit Interval 1023 -trigger by rising edge. 1024 -)))|(% style="width:157px" %)OK 1025 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK 1026 1026 1027 1027 (% style="color:blue" %)**Downlink Command: 0x06** 1028 1028 ... ... @@ -1030,141 +1030,9 @@ 1030 1030 1031 1031 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 1032 1032 1033 -* Example 1: Downlink Payload: 06000000 **~-~-->** AT+INTMOD1=0 1034 -* Example 2: Downlink Payload: 06000003 **~-~-->** AT+INTMOD1=3 1035 -* Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 1036 -* Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 875 +* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 876 +* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 1037 1037 1038 -=== 3.3.4 Set Power Output Duration === 1039 - 1040 - 1041 -Control the output duration 5V . Before each sampling, device will 1042 - 1043 -~1. first enable the power output to external sensor, 1044 - 1045 -2. keep it on as per duration, read sensor value and construct uplink payload 1046 - 1047 -3. final, close the power output. 1048 - 1049 -(% style="color:blue" %)**AT Command: AT+5VT** 1050 - 1051 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1052 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1053 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1054 -500(default) 1055 -OK 1056 -))) 1057 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( 1058 -Close after a delay of 1000 milliseconds. 1059 -)))|(% style="width:157px" %)OK 1060 - 1061 -(% style="color:blue" %)**Downlink Command: 0x07** 1062 - 1063 -Format: Command Code (0x07) followed by 2 bytes. 1064 - 1065 -The first and second bytes are the time to turn on. 1066 - 1067 -* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1068 -* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1069 - 1070 -=== 3.3.5 Set Weighing parameters === 1071 - 1072 - 1073 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 1074 - 1075 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1076 - 1077 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1078 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1079 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1080 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1081 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 1082 - 1083 -(% style="color:blue" %)**Downlink Command: 0x08** 1084 - 1085 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes. 1086 - 1087 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes. 1088 - 1089 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value. 1090 - 1091 -* Example 1: Downlink Payload: 0801 **~-~-->** AT+WEIGRE 1092 -* Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1093 -* Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1094 - 1095 -=== 3.3.6 Set Digital pulse count value === 1096 - 1097 - 1098 -Feature: Set the pulse count value. 1099 - 1100 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. 1101 - 1102 -(% style="color:blue" %)**AT Command: AT+SETCNT** 1103 - 1104 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1105 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1106 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1107 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1108 - 1109 -(% style="color:blue" %)**Downlink Command: 0x09** 1110 - 1111 -Format: Command Code (0x09) followed by 5 bytes. 1112 - 1113 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized. 1114 - 1115 -* Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1116 -* Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1117 - 1118 -=== 3.3.7 Set Workmode === 1119 - 1120 - 1121 -Feature: Switch working mode. 1122 - 1123 -(% style="color:blue" %)**AT Command: AT+MOD** 1124 - 1125 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1126 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1127 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1128 -OK 1129 -))) 1130 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1131 -OK 1132 -Attention:Take effect after ATZ 1133 -))) 1134 - 1135 -(% style="color:blue" %)**Downlink Command: 0x0A** 1136 - 1137 -Format: Command Code (0x0A) followed by 1 bytes. 1138 - 1139 -* Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1140 -* Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1141 - 1142 -=== 3.3.8 PWM setting === 1143 - 1144 -Feature: Set the time acquisition unit for PWM input capture. 1145 - 1146 -(% style="color:blue" %)**AT Command: AT+PWMSET** 1147 - 1148 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1149 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1150 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1151 -0(default) 1152 - 1153 -OK 1154 -))) 1155 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)((( 1156 -OK 1157 - 1158 -))) 1159 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK 1160 - 1161 -(% style="color:blue" %)**Downlink Command: 0x0C** 1162 - 1163 -Format: Command Code (0x0C) followed by 1 bytes. 1164 - 1165 -* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1166 -* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1167 - 1168 1168 = 4. Battery & Power Consumption = 1169 1169 1170 1170 ... ... @@ -1177,43 +1177,28 @@ 1177 1177 1178 1178 1179 1179 (% class="wikigeneratedid" %) 1180 - **User can change firmware SN50v3-LB to:**890 +User can change firmware SN50v3-LB to: 1181 1181 1182 1182 * Change Frequency band/ region. 1183 1183 * Update with new features. 1184 1184 * Fix bugs. 1185 1185 1186 - **Firmware and changelog can be downloaded from :****[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**896 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1187 1187 1188 -**Methods to Update Firmware:** 1189 1189 1190 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1191 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 899 +Methods to Update Firmware: 1192 1192 901 +* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 902 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 903 + 1193 1193 = 6. FAQ = 1194 1194 1195 1195 == 6.1 Where can i find source code of SN50v3-LB? == 1196 1196 1197 - 1198 1198 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1199 1199 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1200 1200 1201 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1202 1202 1203 - 1204 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1205 - 1206 - 1207 -== 6.3 How to put several sensors to a SN50v3-LB? == 1208 - 1209 - 1210 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1211 - 1212 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1213 - 1214 -[[image:image-20230810121434-1.png||height="242" width="656"]] 1215 - 1216 - 1217 1217 = 7. Order Info = 1218 1218 1219 1219 ... ... @@ -1239,7 +1239,6 @@ 1239 1239 1240 1240 = 8. Packing Info = 1241 1241 1242 - 1243 1243 (% style="color:#037691" %)**Package Includes**: 1244 1244 1245 1245 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1255,5 +1255,4 @@ 1255 1255 1256 1256 1257 1257 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1258 - 1259 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]] 952 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- image-20230513111203-7.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -79.9 KB - Content
- image-20230513111231-8.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -64.9 KB - Content
- image-20230513111255-9.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -70.4 KB - Content
- image-20230513134006-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.9 MB - Content
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.0 KB - Content
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Saxer - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.9 KB - Content