<
From version < 73.1 >
edited by Saxer Lin
on 2023/08/18 09:50
To version < 75.1 >
edited by Mengting Qiu
on 2023/12/12 16:50
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Saxer
1 +XWiki.ting
Content
... ... @@ -19,7 +19,7 @@
19 19  
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
... ... @@ -27,7 +27,6 @@
27 27  
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 -
31 31  == 1.2 ​Features ==
32 32  
33 33  
... ... @@ -581,13 +581,16 @@
581 581  
582 582  ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
583 583  
583 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
584 +
584 584  In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
585 585  
586 -[[It should be noted when using PWM mode.>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/#H2.3.3.12A0PWMMOD]]
587 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
587 587  
588 588  
589 589  ===== 2.3.2.10.a  Uplink, PWM input capture =====
590 590  
592 +
591 591  [[image:image-20230817172209-2.png||height="439" width="683"]]
592 592  
593 593  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
... ... @@ -611,42 +611,32 @@
611 611  
612 612  When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
613 613  
614 -Frequency:
616 +**Frequency:**
615 615  
616 616  (% class="MsoNormal" %)
617 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0 ,**
619 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
618 618  
619 -(((
620 -
621 +(% class="MsoNormal" %)
622 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
621 621  
622 -(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
623 -)))
624 624  
625 625  (% class="MsoNormal" %)
626 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1 ,**
626 +**Duty cycle:**
627 627  
628 -(((
629 -
628 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
630 630  
631 -(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
632 -)))
630 +[[image:image-20230818092200-1.png||height="344" width="627"]]
633 633  
634 -(% class="MsoNormal" %)
635 -Duty cycle:
632 +===== 2.3.2.10.b  Uplink, PWM input capture =====
636 636  
637 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
638 638  
639 639  
640 640  
641 -(((
642 -
643 -)))
644 644  
645 645  
646 -[[image:image-20230818092200-1.png||height="344" width="627"]]
647 647  
640 +===== 2.3.2.10.c  Downlink, PWM output =====
648 648  
649 -===== 2.3.2.10.b  Downlink, PWM output =====
650 650  
651 651  [[image:image-20230817173800-3.png||height="412" width="685"]]
652 652  
... ... @@ -905,8 +905,18 @@
905 905  The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
906 906  )))
907 907  * (((
908 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/#H3.3.8PWMsetting]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
900 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
901 +)))
902 +* (((
903 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to Class C. Power consumption will not be low.
909 909  
905 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
906 +
907 +a) If needs to realtime control output, SN50v3-LB has be run in CLass C and have to use external power source.
908 +
909 +b) If the output duration is more than 30 seconds, bettert to use external power source. 
910 +
911 +
910 910  
911 911  )))
912 912  
... ... @@ -1158,9 +1158,9 @@
1158 1158  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1159 1159  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1160 1160  
1161 -
1162 1162  === 3.3.8 PWM setting ===
1163 1163  
1165 +
1164 1164  Feature: Set the time acquisition unit for PWM input capture.
1165 1165  
1166 1166  (% style="color:blue" %)**AT Command: AT+PWMSET**
... ... @@ -1185,6 +1185,11 @@
1185 1185  * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1186 1186  * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1187 1187  
1190 +
1191 +
1192 +
1193 +
1194 +
1188 1188  = 4. Battery & Power Consumption =
1189 1189  
1190 1190  
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0