<
From version < 72.1 >
edited by Saxer Lin
on 2023/08/18 09:47
To version < 87.1 >
edited by Xiaoling
on 2024/01/03 09:57
>
Change comment: Uploaded new attachment "image-20240103095714-2.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Saxer
1 +XWiki.Xiaoling
Content
... ... @@ -3,7 +3,7 @@
3 3  
4 4  
5 5  
6 -**Table of Contents**
6 +**Table of Contents:**
7 7  
8 8  {{toc/}}
9 9  
... ... @@ -19,7 +19,7 @@
19 19  
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
... ... @@ -27,7 +27,6 @@
27 27  
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 -
31 31  == 1.2 ​Features ==
32 32  
33 33  
... ... @@ -89,7 +89,7 @@
89 89  == 1.5 Button & LEDs ==
90 90  
91 91  
92 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
91 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
93 93  
94 94  
95 95  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -128,14 +128,19 @@
128 128  
129 129  == 1.8 Mechanical ==
130 130  
130 +=== 1.8.1 for LB version ===
131 131  
132 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
133 133  
134 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
133 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
135 135  
135 +
136 136  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
137 137  
138 +=== 1.8.2 for LS version ===
138 138  
140 +[[image:image-20231231203439-3.png||height="385" width="886"]]
141 +
142 +
139 139  == 1.9 Hole Option ==
140 140  
141 141  
... ... @@ -581,17 +581,20 @@
581 581  
582 582  ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
583 583  
588 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
589 +
584 584  In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
585 585  
586 -[[It should be noted when using PWM mode.>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/#H2.3.3.12A0PWMMOD]]
592 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
587 587  
588 588  
589 589  ===== 2.3.2.10.a  Uplink, PWM input capture =====
590 590  
597 +
591 591  [[image:image-20230817172209-2.png||height="439" width="683"]]
592 592  
593 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
594 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
600 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
601 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
595 595  |Value|Bat|(% style="width:191px" %)(((
596 596  Temperature(DS18B20)(PC13)
597 597  )))|(% style="width:78px" %)(((
... ... @@ -598,7 +598,6 @@
598 598  ADC(PA4)
599 599  )))|(% style="width:135px" %)(((
600 600  PWM_Setting
601 -
602 602  &Digital Interrupt(PA8)
603 603  )))|(% style="width:70px" %)(((
604 604  Pulse period
... ... @@ -611,44 +611,53 @@
611 611  
612 612  When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
613 613  
614 -Frequency:
620 +**Frequency:**
615 615  
616 616  (% class="MsoNormal" %)
617 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0 ,**
623 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
618 618  
619 -(((
625 +(% class="MsoNormal" %)
626 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
620 620  
621 621  
622 -(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
623 -)))
624 -
625 625  (% class="MsoNormal" %)
626 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1 ,**
630 +**Duty cycle:**
627 627  
628 -(((
632 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
629 629  
634 +[[image:image-20230818092200-1.png||height="344" width="627"]]
630 630  
631 -(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
632 -)))
636 +===== 2.3.2.10.b  Uplink, PWM output =====
633 633  
634 -(% class="MsoNormal" %)
635 -Duty cycle:
638 +[[image:image-20230817172209-2.png||height="439" width="683"]]
636 636  
637 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
640 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
638 638  
639 -(% class="MsoNormal" %)
642 +a is the time delay of the output, the unit is ms.
640 640  
644 +b is the output frequency, the unit is HZ.
641 641  
642 -(((
646 +c is the duty cycle of the output, the unit is %.
643 643  
644 -)))
648 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
645 645  
650 +aa is the time delay of the output, the unit is ms.
646 646  
647 -[[image:image-20230818092200-1.png||height="344" width="627"]]
652 +bb is the output frequency, the unit is HZ.
648 648  
654 +cc is the duty cycle of the output, the unit is %.
649 649  
650 -===== 2.3.2.10.b  Downlink, PWM output =====
651 651  
657 +For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
658 +
659 +The oscilloscope displays as follows:
660 +
661 +[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
662 +
663 +
664 +===== 2.3.2.10.c  Downlink, PWM output =====
665 +
666 +
652 652  [[image:image-20230817173800-3.png||height="412" width="685"]]
653 653  
654 654  Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
... ... @@ -906,8 +906,18 @@
906 906  The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
907 907  )))
908 908  * (((
909 -Since the device can only detect a pulse period of 50ms when AT+PWMSET=0 (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
924 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
925 +)))
926 +* (((
927 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
910 910  
929 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
930 +
931 +a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
932 +
933 +b) If the output duration is more than 30 seconds, better to use external power source. 
934 +
935 +
911 911  
912 912  )))
913 913  
... ... @@ -1159,26 +1159,26 @@
1159 1159  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1160 1160  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1161 1161  
1162 -
1163 -
1187 +(% id="H3.3.8PWMsetting" %)
1164 1164  === 3.3.8 PWM setting ===
1165 1165  
1166 -Feature: Set the time acquisition unit for PWM input capture.
1167 1167  
1191 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1192 +
1168 1168  (% style="color:blue" %)**AT Command: AT+PWMSET**
1169 1169  
1170 1170  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1171 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1172 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1196 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1197 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1173 1173  0(default)
1174 1174  
1175 1175  OK
1176 1176  )))
1177 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1202 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1178 1178  OK
1179 1179  
1180 1180  )))
1181 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1206 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1182 1182  
1183 1183  (% style="color:blue" %)**Downlink Command: 0x0C**
1184 1184  
... ... @@ -1187,10 +1187,73 @@
1187 1187  * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1188 1188  * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1189 1189  
1215 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1190 1190  
1191 -= 4. Battery & Power Consumption =
1217 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1192 1192  
1219 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1220 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1221 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1222 +0,0,0(default)
1193 1193  
1224 +OK
1225 +)))
1226 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1227 +OK
1228 +
1229 +)))
1230 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1231 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1232 +
1233 +
1234 +)))|(% style="width:137px" %)(((
1235 +OK
1236 +)))
1237 +
1238 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1239 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1240 +|(% colspan="1" rowspan="3" style="width:155px" %)(((
1241 +AT+PWMOUT=a,b,c
1242 +
1243 +
1244 +)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1245 +Set PWM output time, output frequency and output duty cycle.
1246 +
1247 +(((
1248 +
1249 +)))
1250 +
1251 +(((
1252 +
1253 +)))
1254 +)))|(% style="width:242px" %)(((
1255 +a: Output time (unit: seconds)
1256 +
1257 +The value ranges from 0 to 65535.
1258 +
1259 +When a=65535, PWM will always output.
1260 +)))
1261 +|(% style="width:242px" %)(((
1262 +b: Output frequency (unit: HZ)
1263 +)))
1264 +|(% style="width:242px" %)(((
1265 +c: Output duty cycle (unit: %)
1266 +
1267 +The value ranges from 0 to 100.
1268 +)))
1269 +
1270 +(% style="color:blue" %)**Downlink Command: 0x0B01**
1271 +
1272 +Format: Command Code (0x0B01) followed by 6 bytes.
1273 +
1274 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1275 +
1276 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1277 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1278 +
1279 += 4. Battery & Power Cons =
1280 +
1281 +
1194 1194  SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1195 1195  
1196 1196  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
image-20231213102404-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +230.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0