Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Saxer1 +XWiki.Xiaoling - Content
-
... ... @@ -19,7 +19,7 @@ 19 19 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, buildingautomation, and so on.22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, and so on. 23 23 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 ... ... @@ -27,7 +27,6 @@ 27 27 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 - 31 31 == 1.2 Features == 32 32 33 33 ... ... @@ -41,6 +41,7 @@ 41 41 * Downlink to change configure 42 42 * 8500mAh Battery for long term use 43 43 43 + 44 44 == 1.3 Specification == 45 45 46 46 ... ... @@ -78,6 +78,7 @@ 78 78 * Sleep Mode: 5uA @ 3.3v 79 79 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 80 80 81 + 81 81 == 1.4 Sleep mode and working mode == 82 82 83 83 ... ... @@ -105,6 +105,7 @@ 105 105 ))) 106 106 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 107 107 109 + 108 108 == 1.6 BLE connection == 109 109 110 110 ... ... @@ -581,13 +581,15 @@ 581 581 582 582 ==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 583 583 586 + 584 584 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 585 585 586 -[[It should be noted when using PWM mode.>> http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/#H2.3.3.12A0PWMMOD]]589 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 587 587 588 588 589 589 ===== 2.3.2.10.a Uplink, PWM input capture ===== 590 590 594 + 591 591 [[image:image-20230817172209-2.png||height="439" width="683"]] 592 592 593 593 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) ... ... @@ -611,44 +611,26 @@ 611 611 612 612 When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 613 613 614 -Frequency: 618 +**Frequency:** 615 615 616 616 (% class="MsoNormal" %) 617 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0 621 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 618 618 619 -((( 620 - 621 - 622 -(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 623 -))) 624 - 625 625 (% class="MsoNormal" %) 626 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1 624 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 627 627 628 -((( 629 629 630 - 631 -(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 632 -))) 633 - 634 634 (% class="MsoNormal" %) 635 -Duty cycle: 628 +**Duty cycle:** 636 636 637 637 Duty cycle= Duration of high level/ Pulse period*100 ~(%). 638 638 639 -(% class="MsoNormal" %) 640 - 641 - 642 -((( 643 - 644 -))) 645 - 646 - 647 647 [[image:image-20230818092200-1.png||height="344" width="627"]] 648 648 649 649 650 650 ===== 2.3.2.10.b Downlink, PWM output ===== 651 651 637 + 652 652 [[image:image-20230817173800-3.png||height="412" width="685"]] 653 653 654 654 Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** ... ... @@ -906,8 +906,9 @@ 906 906 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 907 907 ))) 908 908 * ((( 909 -Since the device can only detect a pulse period of 50ms when AT+PWMSET=0 (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 895 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 910 910 897 + 911 911 912 912 ))) 913 913 ... ... @@ -931,6 +931,7 @@ 931 931 * 8: MOD9 932 932 * 9: MOD10 933 933 921 + 934 934 == 2.4 Payload Decoder file == 935 935 936 936 ... ... @@ -960,6 +960,7 @@ 960 960 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 961 961 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 962 962 951 + 963 963 == 3.2 General Commands == 964 964 965 965 ... ... @@ -1007,6 +1007,7 @@ 1007 1007 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 1008 1008 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 1009 1009 999 + 1010 1010 === 3.3.2 Get Device Status === 1011 1011 1012 1012 ... ... @@ -1055,6 +1055,7 @@ 1055 1055 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 1056 1056 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 1057 1057 1048 + 1058 1058 === 3.3.4 Set Power Output Duration === 1059 1059 1060 1060 ... ... @@ -1087,6 +1087,7 @@ 1087 1087 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1088 1088 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1089 1089 1081 + 1090 1090 === 3.3.5 Set Weighing parameters === 1091 1091 1092 1092 ... ... @@ -1112,6 +1112,7 @@ 1112 1112 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1113 1113 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1114 1114 1107 + 1115 1115 === 3.3.6 Set Digital pulse count value === 1116 1116 1117 1117 ... ... @@ -1135,6 +1135,7 @@ 1135 1135 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1136 1136 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1137 1137 1131 + 1138 1138 === 3.3.7 Set Workmode === 1139 1139 1140 1140 ... ... @@ -1160,9 +1160,9 @@ 1160 1160 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1161 1161 1162 1162 1163 - 1164 1164 === 3.3.8 PWM setting === 1165 1165 1159 + 1166 1166 Feature: Set the time acquisition unit for PWM input capture. 1167 1167 1168 1168 (% style="color:blue" %)**AT Command: AT+PWMSET** ... ... @@ -1213,6 +1213,7 @@ 1213 1213 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1214 1214 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1215 1215 1210 + 1216 1216 = 6. FAQ = 1217 1217 1218 1218 == 6.1 Where can i find source code of SN50v3-LB? == ... ... @@ -1221,6 +1221,7 @@ 1221 1221 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1222 1222 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1223 1223 1219 + 1224 1224 == 6.2 How to generate PWM Output in SN50v3-LB? == 1225 1225 1226 1226 ... ... @@ -1260,6 +1260,7 @@ 1260 1260 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1261 1261 * (% style="color:red" %)**NH**(%%): No Hole 1262 1262 1259 + 1263 1263 = 8. Packing Info = 1264 1264 1265 1265 ... ... @@ -1274,6 +1274,7 @@ 1274 1274 * Package Size / pcs : cm 1275 1275 * Weight / pcs : g 1276 1276 1274 + 1277 1277 = 9. Support = 1278 1278 1279 1279