Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Saxer1 +XWiki.Xiaoling - Content
-
... ... @@ -19,7 +19,7 @@ 19 19 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphonedetection,building automation, andso on.22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 23 23 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 ... ... @@ -27,7 +27,6 @@ 27 27 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 - 31 31 == 1.2 Features == 32 32 33 33 ... ... @@ -581,13 +581,15 @@ 581 581 582 582 ==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 583 583 583 + 584 584 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 585 585 586 -[[It should be noted when using PWM mode.>> http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/#H2.3.3.12A0PWMMOD]]586 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 587 587 588 588 589 589 ===== 2.3.2.10.a Uplink, PWM input capture ===== 590 590 591 + 591 591 [[image:image-20230817172209-2.png||height="439" width="683"]] 592 592 593 593 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) ... ... @@ -609,15 +609,28 @@ 609 609 [[image:image-20230817170702-1.png||height="161" width="1044"]] 610 610 611 611 612 - (%style="color:blue"%)**AT+PWMSET=AA(Defaultis0) ==> Corresponding downlink:0BAA**613 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 613 613 614 - When AA is 0, the unit of PWM capturetime is microsecond. The capture frequencyrange is between 20HZ and 100000HZ.615 +**Frequency:** 615 615 616 -When AA is 1, the unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. 617 +(% class="MsoNormal" %) 618 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 617 617 620 +(% class="MsoNormal" %) 621 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 618 618 623 + 624 +(% class="MsoNormal" %) 625 +**Duty cycle:** 626 + 627 +Duty cycle= Duration of high level/ Pulse period*100 ~(%). 628 + 629 +[[image:image-20230818092200-1.png||height="344" width="627"]] 630 + 631 + 619 619 ===== 2.3.2.10.b Downlink, PWM output ===== 620 620 634 + 621 621 [[image:image-20230817173800-3.png||height="412" width="685"]] 622 622 623 623 Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** ... ... @@ -875,8 +875,9 @@ 875 875 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 876 876 ))) 877 877 * ((( 878 -Since the device can only detect a pulse period of 50ms when AT+PWMSET=0 (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 892 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 879 879 894 + 880 880 881 881 ))) 882 882 ... ... @@ -1128,6 +1128,33 @@ 1128 1128 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1129 1129 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1130 1130 1146 +=== 3.3.8 PWM setting === 1147 + 1148 + 1149 +Feature: Set the time acquisition unit for PWM input capture. 1150 + 1151 +(% style="color:blue" %)**AT Command: AT+PWMSET** 1152 + 1153 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1154 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1155 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1156 +0(default) 1157 + 1158 +OK 1159 +))) 1160 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)((( 1161 +OK 1162 + 1163 +))) 1164 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK 1165 + 1166 +(% style="color:blue" %)**Downlink Command: 0x0C** 1167 + 1168 +Format: Command Code (0x0C) followed by 1 bytes. 1169 + 1170 +* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1171 +* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1172 + 1131 1131 = 4. Battery & Power Consumption = 1132 1132 1133 1133