<
From version < 71.1 >
edited by Saxer Lin
on 2023/08/18 09:21
To version < 74.7 >
edited by Xiaoling
on 2023/09/26 08:52
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Saxer
1 +XWiki.Xiaoling
Content
... ... @@ -19,7 +19,7 @@
19 19  
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
... ... @@ -27,7 +27,6 @@
27 27  
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 -
31 31  == 1.2 ​Features ==
32 32  
33 33  
... ... @@ -581,13 +581,15 @@
581 581  
582 582  ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
583 583  
583 +
584 584  In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
585 585  
586 -[[It should be noted when using PWM mode.>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/#H2.3.3.12A0PWMMOD]]
586 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
587 587  
588 588  
589 589  ===== 2.3.2.10.a  Uplink, PWM input capture =====
590 590  
591 +
591 591  [[image:image-20230817172209-2.png||height="439" width="683"]]
592 592  
593 593  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
... ... @@ -609,15 +609,28 @@
609 609  [[image:image-20230817170702-1.png||height="161" width="1044"]]
610 610  
611 611  
612 -(% style="color:blue" %)**AT+PWMSET=AA(Default is 0)  ==> Corresponding downlink: 0B AA**
613 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
613 613  
614 -When AA is 0, the unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.  
615 +**Frequency:**
615 615  
616 -When AA is 1, the unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ.  
617 +(% class="MsoNormal" %)
618 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
617 617  
620 +(% class="MsoNormal" %)
621 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
618 618  
623 +
624 +(% class="MsoNormal" %)
625 +**Duty cycle:**
626 +
627 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
628 +
629 +[[image:image-20230818092200-1.png||height="344" width="627"]]
630 +
631 +
619 619  ===== 2.3.2.10.b  Downlink, PWM output =====
620 620  
634 +
621 621  [[image:image-20230817173800-3.png||height="412" width="685"]]
622 622  
623 623  Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
... ... @@ -875,8 +875,9 @@
875 875  The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
876 876  )))
877 877  * (((
878 -Since the device can only detect a pulse period of 50ms when AT+PWMSET=0 (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
892 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
879 879  
894 +
880 880  
881 881  )))
882 882  
... ... @@ -1128,6 +1128,33 @@
1128 1128  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1129 1129  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1130 1130  
1146 +=== 3.3.8 PWM setting ===
1147 +
1148 +
1149 +Feature: Set the time acquisition unit for PWM input capture.
1150 +
1151 +(% style="color:blue" %)**AT Command: AT+PWMSET**
1152 +
1153 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1154 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1155 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1156 +0(default)
1157 +
1158 +OK
1159 +)))
1160 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1161 +OK
1162 +
1163 +)))
1164 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1165 +
1166 +(% style="color:blue" %)**Downlink Command: 0x0C**
1167 +
1168 +Format: Command Code (0x0C) followed by 1 bytes.
1169 +
1170 +* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1171 +* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1172 +
1131 1131  = 4. Battery & Power Consumption =
1132 1132  
1133 1133  
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0