<
From version < 71.1 >
edited by Saxer Lin
on 2023/08/18 09:21
To version < 43.49 >
edited by Xiaoling
on 2023/05/16 15:49
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Saxer
1 +XWiki.Xiaoling
Content
... ... @@ -123,7 +123,7 @@
123 123  == 1.7 Pin Definitions ==
124 124  
125 125  
126 -[[image:image-20230610163213-1.png||height="404" width="699"]]
126 +[[image:image-20230513102034-2.png]]
127 127  
128 128  
129 129  == 1.8 Mechanical ==
... ... @@ -136,7 +136,7 @@
136 136  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
137 137  
138 138  
139 -== 1.9 Hole Option ==
139 +== Hole Option ==
140 140  
141 141  
142 142  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
... ... @@ -151,7 +151,7 @@
151 151  == 2.1 How it works ==
152 152  
153 153  
154 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
155 155  
156 156  
157 157  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -159,7 +159,7 @@
159 159  
160 160  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
161 161  
162 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
163 163  
164 164  
165 165  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -208,7 +208,7 @@
208 208  === 2.3.1 Device Status, FPORT~=5 ===
209 209  
210 210  
211 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
211 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
212 212  
213 213  The Payload format is as below.
214 214  
... ... @@ -216,44 +216,44 @@
216 216  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
217 217  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
218 218  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
219 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
220 220  
221 221  Example parse in TTNv3
222 222  
223 223  
224 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
224 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
225 225  
226 226  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
227 227  
228 228  (% style="color:#037691" %)**Frequency Band**:
229 229  
230 -0x01: EU868
230 +*0x01: EU868
231 231  
232 -0x02: US915
232 +*0x02: US915
233 233  
234 -0x03: IN865
234 +*0x03: IN865
235 235  
236 -0x04: AU915
236 +*0x04: AU915
237 237  
238 -0x05: KZ865
238 +*0x05: KZ865
239 239  
240 -0x06: RU864
240 +*0x06: RU864
241 241  
242 -0x07: AS923
242 +*0x07: AS923
243 243  
244 -0x08: AS923-1
244 +*0x08: AS923-1
245 245  
246 -0x09: AS923-2
246 +*0x09: AS923-2
247 247  
248 -0x0a: AS923-3
248 +*0x0a: AS923-3
249 249  
250 -0x0b: CN470
250 +*0x0b: CN470
251 251  
252 -0x0c: EU433
252 +*0x0c: EU433
253 253  
254 -0x0d: KR920
254 +*0x0d: KR920
255 255  
256 -0x0e: MA869
256 +*0x0e: MA869
257 257  
258 258  
259 259  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -277,22 +277,19 @@
277 277  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
278 278  
279 279  
280 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
280 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
281 281  
282 282  For example:
283 283  
284 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
285 285  
286 286  
287 287  (% style="color:red" %) **Important Notice:**
288 288  
289 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
289 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
290 +1. All modes share the same Payload Explanation from HERE.
291 +1. By default, the device will send an uplink message every 20 minutes.
290 290  
291 -2. All modes share the same Payload Explanation from HERE.
292 -
293 -3. By default, the device will send an uplink message every 20 minutes.
294 -
295 -
296 296  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
297 297  
298 298  
... ... @@ -299,8 +299,8 @@
299 299  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
300 300  
301 301  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
302 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
303 -|Value|Bat|(% style="width:191px" %)(((
299 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
300 +|**Value**|Bat|(% style="width:191px" %)(((
304 304  Temperature(DS18B20)(PC13)
305 305  )))|(% style="width:78px" %)(((
306 306  ADC(PA4)
... ... @@ -315,6 +315,7 @@
315 315  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
316 316  
317 317  
315 +
318 318  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
319 319  
320 320  
... ... @@ -321,8 +321,8 @@
321 321  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
322 322  
323 323  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
324 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
325 -|Value|BAT|(% style="width:196px" %)(((
322 +|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
323 +|**Value**|BAT|(% style="width:196px" %)(((
326 326  Temperature(DS18B20)(PC13)
327 327  )))|(% style="width:87px" %)(((
328 328  ADC(PA4)
... ... @@ -329,7 +329,7 @@
329 329  )))|(% style="width:189px" %)(((
330 330  Digital in(PB15) & Digital Interrupt(PA8)
331 331  )))|(% style="width:208px" %)(((
332 -Distance measure by: 1) LIDAR-Lite V3HP
330 +Distance measure by:1) LIDAR-Lite V3HP
333 333  Or 2) Ultrasonic Sensor
334 334  )))|(% style="width:117px" %)Reserved
335 335  
... ... @@ -343,7 +343,7 @@
343 343  
344 344  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
345 345  
346 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
344 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
347 347  
348 348  [[image:image-20230512173903-6.png||height="596" width="715"]]
349 349  
... ... @@ -352,7 +352,7 @@
352 352  
353 353  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
354 354  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
355 -|Value|BAT|(% style="width:183px" %)(((
353 +|**Value**|BAT|(% style="width:183px" %)(((
356 356  Temperature(DS18B20)(PC13)
357 357  )))|(% style="width:173px" %)(((
358 358  Digital in(PB15) & Digital Interrupt(PA8)
... ... @@ -360,7 +360,8 @@
360 360  ADC(PA4)
361 361  )))|(% style="width:323px" %)(((
362 362  Distance measure by:1)TF-Mini plus LiDAR
363 -Or 2) TF-Luna LiDAR
361 +Or 
362 +2) TF-Luna LiDAR
364 364  )))|(% style="width:188px" %)Distance signal  strength
365 365  
366 366  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
... ... @@ -368,7 +368,7 @@
368 368  
369 369  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
370 370  
371 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
370 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
372 372  
373 373  [[image:image-20230512180609-7.png||height="555" width="802"]]
374 374  
... ... @@ -375,9 +375,9 @@
375 375  
376 376  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
377 377  
378 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
377 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
379 379  
380 -[[image:image-20230610170047-1.png||height="452" width="799"]]
379 +[[image:image-20230513105207-4.png||height="469" width="802"]]
381 381  
382 382  
383 383  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
... ... @@ -388,8 +388,8 @@
388 388  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
389 389  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
390 390  **Size(bytes)**
391 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
392 -|Value|(% style="width:68px" %)(((
390 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
391 +|**Value**|(% style="width:68px" %)(((
393 393  ADC1(PA4)
394 394  )))|(% style="width:75px" %)(((
395 395  ADC2(PA5)
... ... @@ -413,7 +413,7 @@
413 413  
414 414  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
415 415  |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
416 -|Value|BAT|(% style="width:186px" %)(((
415 +|**Value**|BAT|(% style="width:186px" %)(((
417 417  Temperature1(DS18B20)(PC13)
418 418  )))|(% style="width:82px" %)(((
419 419  ADC(PA4)
... ... @@ -424,10 +424,10 @@
424 424  
425 425  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
426 426  
427 -
428 428  [[image:image-20230513134006-1.png||height="559" width="736"]]
429 429  
430 430  
429 +
431 431  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
432 432  
433 433  
... ... @@ -435,18 +435,15 @@
435 435  
436 436  Each HX711 need to be calibrated before used. User need to do below two steps:
437 437  
438 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
439 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
437 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
438 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
440 440  1. (((
441 441  Weight has 4 bytes, the unit is g.
442 -
443 -
444 -
445 445  )))
446 446  
447 447  For example:
448 448  
449 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
445 +**AT+GETSENSORVALUE =0**
450 450  
451 451  Response:  Weight is 401 g
452 452  
... ... @@ -456,17 +456,20 @@
456 456  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
457 457  **Size(bytes)**
458 458  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
459 -|Value|BAT|(% style="width:193px" %)(((
460 -Temperature(DS18B20)(PC13)
455 +|**Value**|BAT|(% style="width:193px" %)(((
456 +Temperature(DS18B20)
457 +(PC13)
461 461  )))|(% style="width:85px" %)(((
462 462  ADC(PA4)
463 463  )))|(% style="width:186px" %)(((
464 -Digital in(PB15) & Digital Interrupt(PA8)
461 +Digital in(PB15) &
462 +Digital Interrupt(PA8)
465 465  )))|(% style="width:100px" %)Weight
466 466  
467 467  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
468 468  
469 469  
468 +
470 470  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
471 471  
472 472  
... ... @@ -476,12 +476,11 @@
476 476  
477 477  [[image:image-20230512181814-9.png||height="543" width="697"]]
478 478  
479 -
480 480  (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
481 481  
482 482  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
483 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
484 -|Value|BAT|(% style="width:256px" %)(((
481 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
482 +|**Value**|BAT|(% style="width:256px" %)(((
485 485  Temperature(DS18B20)(PC13)
486 486  )))|(% style="width:108px" %)(((
487 487  ADC(PA4)
... ... @@ -494,6 +494,7 @@
494 494  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
495 495  
496 496  
495 +
497 497  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
498 498  
499 499  
... ... @@ -501,7 +501,7 @@
501 501  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
502 502  **Size(bytes)**
503 503  )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
504 -|Value|BAT|(% style="width:188px" %)(((
503 +|**Value**|BAT|(% style="width:188px" %)(((
505 505  Temperature(DS18B20)
506 506  (PC13)
507 507  )))|(% style="width:83px" %)(((
... ... @@ -519,8 +519,8 @@
519 519  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
520 520  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
521 521  **Size(bytes)**
522 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
523 -|Value|BAT|(% style="width:207px" %)(((
521 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
522 +|**Value**|BAT|(% style="width:207px" %)(((
524 524  Temperature(DS18B20)
525 525  (PC13)
526 526  )))|(% style="width:94px" %)(((
... ... @@ -542,19 +542,19 @@
542 542  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
543 543  |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
544 544  **Size(bytes)**
545 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
546 -|Value|BAT|(((
547 -Temperature
548 -(DS18B20)(PC13)
544 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
545 +|**Value**|BAT|(((
546 +Temperature1(DS18B20)
547 +(PC13)
549 549  )))|(((
550 -Temperature2
551 -(DS18B20)(PB9)
549 +Temperature2(DS18B20)
550 +(PB9)
552 552  )))|(((
553 553  Digital Interrupt
554 554  (PB15)
555 555  )))|(% style="width:193px" %)(((
556 -Temperature3
557 -(DS18B20)(PB8)
555 +Temperature3(DS18B20)
556 +(PB8)
558 558  )))|(% style="width:78px" %)(((
559 559  Count1(PA8)
560 560  )))|(% style="width:78px" %)(((
... ... @@ -579,63 +579,6 @@
579 579  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
580 580  
581 581  
582 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
583 -
584 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
585 -
586 -[[It should be noted when using PWM mode.>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/#H2.3.3.12A0PWMMOD]]
587 -
588 -
589 -===== 2.3.2.10.a  Uplink, PWM input capture =====
590 -
591 -[[image:image-20230817172209-2.png||height="439" width="683"]]
592 -
593 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
594 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
595 -|Value|Bat|(% style="width:191px" %)(((
596 -Temperature(DS18B20)(PC13)
597 -)))|(% style="width:78px" %)(((
598 -ADC(PA4)
599 -)))|(% style="width:135px" %)(((
600 -PWM_Setting
601 -
602 -&Digital Interrupt(PA8)
603 -)))|(% style="width:70px" %)(((
604 -Pulse period
605 -)))|(% style="width:89px" %)(((
606 -Duration of high level
607 -)))
608 -
609 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
610 -
611 -
612 -(% style="color:blue" %)**AT+PWMSET=AA(Default is 0)  ==> Corresponding downlink: 0B AA**
613 -
614 -When AA is 0, the unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.  
615 -
616 -When AA is 1, the unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ.  
617 -
618 -
619 -===== 2.3.2.10.b  Downlink, PWM output =====
620 -
621 -[[image:image-20230817173800-3.png||height="412" width="685"]]
622 -
623 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
624 -
625 - xx xx xx is the output frequency, the unit is HZ.
626 -
627 - yy is the duty cycle of the output, the unit is %.
628 -
629 - zz zz is the time delay of the output, the unit is ms.
630 -
631 -
632 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
633 -
634 -The oscilloscope displays as follows:
635 -
636 -[[image:image-20230817173858-5.png||height="694" width="921"]]
637 -
638 -
639 639  === 2.3.3  ​Decode payload ===
640 640  
641 641  
... ... @@ -645,13 +645,13 @@
645 645  
646 646  The payload decoder function for TTN V3 are here:
647 647  
648 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
590 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
649 649  
650 650  
651 651  ==== 2.3.3.1 Battery Info ====
652 652  
653 653  
654 -Check the battery voltage for SN50v3-LB.
596 +Check the battery voltage for SN50v3.
655 655  
656 656  Ex1: 0x0B45 = 2885mV
657 657  
... ... @@ -699,24 +699,19 @@
699 699  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
700 700  
701 701  
702 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
644 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
703 703  
704 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
646 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
705 705  
706 706  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
707 707  
708 -
709 709  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
710 710  
711 711  
712 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
713 -
714 -[[image:image-20230811113449-1.png||height="370" width="608"]]
715 -
716 716  ==== 2.3.3.5 Digital Interrupt ====
717 717  
718 718  
719 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
656 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
720 720  
721 721  (% style="color:blue" %)** Interrupt connection method:**
722 722  
... ... @@ -729,18 +729,18 @@
729 729  
730 730  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
731 731  
732 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
669 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
733 733  
734 734  
735 735  (% style="color:blue" %)**Below is the installation example:**
736 736  
737 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
674 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
738 738  
739 739  * (((
740 -One pin to SN50v3-LB's PA8 pin
677 +One pin to SN50_v3's PA8 pin
741 741  )))
742 742  * (((
743 -The other pin to SN50v3-LB's VDD pin
680 +The other pin to SN50_v3's VDD pin
744 744  )))
745 745  
746 746  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -757,7 +757,7 @@
757 757  
758 758  The command is:
759 759  
760 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
697 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
761 761  
762 762  Below shows some screen captures in TTN V3:
763 763  
... ... @@ -764,7 +764,7 @@
764 764  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
765 765  
766 766  
767 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
704 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
768 768  
769 769  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
770 770  
... ... @@ -776,13 +776,12 @@
776 776  
777 777  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
778 778  
779 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
716 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
780 780  
781 -
782 782  Below is the connection to SHT20/ SHT31. The connection is as below:
783 783  
784 -[[image:image-20230610170152-2.png||height="501" width="846"]]
785 785  
721 +[[image:image-20230513103633-3.png||height="448" width="716"]]
786 786  
787 787  The device will be able to get the I2C sensor data now and upload to IoT Server.
788 788  
... ... @@ -810,7 +810,7 @@
810 810  
811 811  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
812 812  
813 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
749 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
814 814  
815 815  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
816 816  
... ... @@ -818,9 +818,8 @@
818 818  
819 819  [[image:image-20230512173903-6.png||height="596" width="715"]]
820 820  
757 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
821 821  
822 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
823 -
824 824  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
825 825  
826 826  **Example:**
... ... @@ -828,17 +828,16 @@
828 828  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
829 829  
830 830  
766 +
831 831  ==== 2.3.3.9  Battery Output - BAT pin ====
832 832  
769 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
833 833  
834 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
835 835  
836 -
837 837  ==== 2.3.3.10  +5V Output ====
838 838  
774 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
839 839  
840 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
841 -
842 842  The 5V output time can be controlled by AT Command.
843 843  
844 844  (% style="color:blue" %)**AT+5VT=1000**
... ... @@ -845,44 +845,21 @@
845 845  
846 846  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
847 847  
848 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
782 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
849 849  
850 850  
785 +
851 851  ==== 2.3.3.11  BH1750 Illumination Sensor ====
852 852  
853 -
854 854  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
855 855  
856 856  [[image:image-20230512172447-4.png||height="416" width="712"]]
857 857  
858 -
859 859  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
860 860  
861 861  
862 -==== 2.3.3.12  PWM MOD ====
795 +==== 2.3.3.12  Working MOD ====
863 863  
864 -
865 -* (((
866 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
867 -)))
868 -* (((
869 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
870 -)))
871 -
872 - [[image:image-20230817183249-3.png||height="320" width="417"]]
873 -
874 -* (((
875 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
876 -)))
877 -* (((
878 -Since the device can only detect a pulse period of 50ms when AT+PWMSET=0 (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
879 -
880 -
881 -)))
882 -
883 -==== 2.3.3.13  Working MOD ====
884 -
885 -
886 886  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
887 887  
888 888  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -898,7 +898,6 @@
898 898  * 6: MOD7
899 899  * 7: MOD8
900 900  * 8: MOD9
901 -* 9: MOD10
902 902  
903 903  == 2.4 Payload Decoder file ==
904 904  
... ... @@ -910,6 +910,7 @@
910 910  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
911 911  
912 912  
823 +
913 913  == 2.5 Frequency Plans ==
914 914  
915 915  
... ... @@ -945,18 +945,17 @@
945 945  == 3.3 Commands special design for SN50v3-LB ==
946 946  
947 947  
948 -These commands only valid for SN50v3-LB, as below:
859 +These commands only valid for S31x-LB, as below:
949 949  
950 950  
951 951  === 3.3.1 Set Transmit Interval Time ===
952 952  
953 -
954 954  Feature: Change LoRaWAN End Node Transmit Interval.
955 955  
956 956  (% style="color:blue" %)**AT Command: AT+TDC**
957 957  
958 958  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
959 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
869 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
960 960  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
961 961  30000
962 962  OK
... ... @@ -978,23 +978,21 @@
978 978  
979 979  === 3.3.2 Get Device Status ===
980 980  
981 -
982 982  Send a LoRaWAN downlink to ask the device to send its status.
983 983  
984 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
893 +(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
985 985  
986 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
895 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
987 987  
988 988  
989 989  === 3.3.3 Set Interrupt Mode ===
990 990  
991 -
992 992  Feature, Set Interrupt mode for GPIO_EXIT.
993 993  
994 994  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
995 995  
996 996  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
997 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
905 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
998 998  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
999 999  0
1000 1000  OK
... ... @@ -1009,6 +1009,7 @@
1009 1009  )))|(% style="width:157px" %)OK
1010 1010  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1011 1011  Set Transmit Interval
920 +
1012 1012  trigger by rising edge.
1013 1013  )))|(% style="width:157px" %)OK
1014 1014  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -1026,7 +1026,6 @@
1026 1026  
1027 1027  === 3.3.4 Set Power Output Duration ===
1028 1028  
1029 -
1030 1030  Control the output duration 5V . Before each sampling, device will
1031 1031  
1032 1032  ~1. first enable the power output to external sensor,
... ... @@ -1038,7 +1038,7 @@
1038 1038  (% style="color:blue" %)**AT Command: AT+5VT**
1039 1039  
1040 1040  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1041 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
949 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1042 1042  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1043 1043  500(default)
1044 1044  OK
... ... @@ -1058,13 +1058,12 @@
1058 1058  
1059 1059  === 3.3.5 Set Weighing parameters ===
1060 1060  
1061 -
1062 1062  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1063 1063  
1064 1064  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1065 1065  
1066 1066  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1067 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
974 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1068 1068  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1069 1069  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1070 1070  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -1083,7 +1083,6 @@
1083 1083  
1084 1084  === 3.3.6 Set Digital pulse count value ===
1085 1085  
1086 -
1087 1087  Feature: Set the pulse count value.
1088 1088  
1089 1089  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -1091,7 +1091,7 @@
1091 1091  (% style="color:blue" %)**AT Command: AT+SETCNT**
1092 1092  
1093 1093  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1094 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1000 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1095 1095  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1096 1096  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1097 1097  
... ... @@ -1106,13 +1106,12 @@
1106 1106  
1107 1107  === 3.3.7 Set Workmode ===
1108 1108  
1109 -
1110 1110  Feature: Switch working mode.
1111 1111  
1112 1112  (% style="color:blue" %)**AT Command: AT+MOD**
1113 1113  
1114 1114  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1115 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1020 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1116 1116  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1117 1117  OK
1118 1118  )))
... ... @@ -1140,43 +1140,27 @@
1140 1140  
1141 1141  
1142 1142  (% class="wikigeneratedid" %)
1143 -**User can change firmware SN50v3-LB to:**
1048 +User can change firmware SN50v3-LB to:
1144 1144  
1145 1145  * Change Frequency band/ region.
1146 1146  * Update with new features.
1147 1147  * Fix bugs.
1148 1148  
1149 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1054 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1150 1150  
1151 -**Methods to Update Firmware:**
1152 1152  
1153 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1154 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1057 +Methods to Update Firmware:
1155 1155  
1059 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1060 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1061 +
1156 1156  = 6. FAQ =
1157 1157  
1158 1158  == 6.1 Where can i find source code of SN50v3-LB? ==
1159 1159  
1160 -
1161 1161  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1162 1162  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1163 1163  
1164 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1165 -
1166 -
1167 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1168 -
1169 -
1170 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1171 -
1172 -
1173 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1174 -
1175 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1176 -
1177 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1178 -
1179 -
1180 1180  = 7. Order Info =
1181 1181  
1182 1182  
... ... @@ -1202,7 +1202,6 @@
1202 1202  
1203 1203  = 8. ​Packing Info =
1204 1204  
1205 -
1206 1206  (% style="color:#037691" %)**Package Includes**:
1207 1207  
1208 1208  * SN50v3-LB LoRaWAN Generic Node
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0