<
From version < 70.1 >
edited by Saxer Lin
on 2023/08/17 18:34
To version < 87.25 >
edited by Xiaoling
on 2024/01/03 14:36
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Saxer
1 +XWiki.Xiaoling
Content
... ... @@ -1,10 +1,15 @@
1 +
2 +
1 1  (% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
4 +[[image:image-20240103095714-2.png]]
3 3  
4 4  
5 5  
6 -**Table of Contents:**
7 7  
9 +
10 +
11 +**Table of Contents:**
12 +
8 8  {{toc/}}
9 9  
10 10  
... ... @@ -14,20 +14,19 @@
14 14  
15 15  = 1. Introduction =
16 16  
17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
18 18  
19 19  
20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
24 -(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
25 25  
26 -(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
27 27  
28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 -
31 31  == 1.2 ​Features ==
32 32  
33 33  
... ... @@ -39,7 +39,8 @@
39 39  * Support wireless OTA update firmware
40 40  * Uplink on periodically
41 41  * Downlink to change configure
42 -* 8500mAh Battery for long term use
46 +* 8500mAh Li/SOCl2 battery (SN50v3-LB)
47 +* Solar panel + 3000mAh Li-on battery (SN50v3-LS)
43 43  
44 44  == 1.3 Specification ==
45 45  
... ... @@ -46,7 +46,7 @@
46 46  
47 47  (% style="color:#037691" %)**Common DC Characteristics:**
48 48  
49 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
54 +* Supply Voltage: Built- in battery , 2.5v ~~ 3.6v
50 50  * Operating Temperature: -40 ~~ 85°C
51 51  
52 52  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -89,11 +89,11 @@
89 89  == 1.5 Button & LEDs ==
90 90  
91 91  
92 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
97 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
93 93  
94 94  
95 95  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
96 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
101 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
97 97  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
98 98  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
99 99  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -108,7 +108,7 @@
108 108  == 1.6 BLE connection ==
109 109  
110 110  
111 -SN50v3-LB supports BLE remote configure.
116 +SN50v3-LB/LS supports BLE remote configure.
112 112  
113 113  
114 114  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -128,18 +128,23 @@
128 128  
129 129  == 1.8 Mechanical ==
130 130  
136 +=== 1.8.1 for LB version ===
131 131  
132 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
133 133  
134 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
139 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
135 135  
141 +
136 136  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
137 137  
144 +=== 1.8.2 for LS version ===
138 138  
146 +[[image:image-20231231203439-3.png||height="385" width="886"]]
147 +
148 +
139 139  == 1.9 Hole Option ==
140 140  
141 141  
142 -SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
152 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
143 143  
144 144  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
145 145  
... ... @@ -146,12 +146,12 @@
146 146  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
147 147  
148 148  
149 -= 2. Configure SN50v3-LB to connect to LoRaWAN network =
159 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
150 150  
151 151  == 2.1 How it works ==
152 152  
153 153  
154 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
164 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
155 155  
156 156  
157 157  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -162,9 +162,9 @@
162 162  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
163 163  
164 164  
165 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
175 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
166 166  
167 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
177 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
168 168  
169 169  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
170 170  
... ... @@ -193,10 +193,10 @@
193 193  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
194 194  
195 195  
196 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
206 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
197 197  
198 198  
199 -Press the button for 5 seconds to activate the SN50v3-LB.
209 +Press the button for 5 seconds to activate the SN50v3-LB/LS.
200 200  
201 201  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
202 202  
... ... @@ -208,13 +208,13 @@
208 208  === 2.3.1 Device Status, FPORT~=5 ===
209 209  
210 210  
211 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
221 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
212 212  
213 213  The Payload format is as below.
214 214  
215 215  
216 216  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
217 -|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
227 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
218 218  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
219 219  |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
220 220  
... ... @@ -221,7 +221,7 @@
221 221  Example parse in TTNv3
222 222  
223 223  
224 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
234 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
225 225  
226 226  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
227 227  
... ... @@ -277,7 +277,7 @@
277 277  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
278 278  
279 279  
280 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
290 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
281 281  
282 282  For example:
283 283  
... ... @@ -286,7 +286,7 @@
286 286  
287 287  (% style="color:red" %) **Important Notice:**
288 288  
289 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
299 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
290 290  
291 291  2. All modes share the same Payload Explanation from HERE.
292 292  
... ... @@ -299,7 +299,7 @@
299 299  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
300 300  
301 301  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
302 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
312 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**2**|(% style="background-color:#4f81bd; color:white; width:80px" %)**2**
303 303  |Value|Bat|(% style="width:191px" %)(((
304 304  Temperature(DS18B20)(PC13)
305 305  )))|(% style="width:78px" %)(((
... ... @@ -321,7 +321,7 @@
321 321  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
322 322  
323 323  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
324 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
334 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
325 325  |Value|BAT|(% style="width:196px" %)(((
326 326  Temperature(DS18B20)(PC13)
327 327  )))|(% style="width:87px" %)(((
... ... @@ -351,7 +351,7 @@
351 351  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
352 352  
353 353  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
354 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
364 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:80px" %)**2**
355 355  |Value|BAT|(% style="width:183px" %)(((
356 356  Temperature(DS18B20)(PC13)
357 357  )))|(% style="width:173px" %)(((
... ... @@ -386,9 +386,9 @@
386 386  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
387 387  
388 388  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
389 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
399 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
390 390  **Size(bytes)**
391 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
401 +)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 100px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
392 392  |Value|(% style="width:68px" %)(((
393 393  ADC1(PA4)
394 394  )))|(% style="width:75px" %)(((
... ... @@ -412,7 +412,7 @@
412 412  This mode has total 11 bytes. As shown below:
413 413  
414 414  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
415 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
425 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**
416 416  |Value|BAT|(% style="width:186px" %)(((
417 417  Temperature1(DS18B20)(PC13)
418 418  )))|(% style="width:82px" %)(((
... ... @@ -453,9 +453,9 @@
453 453  Check the response of this command and adjust the value to match the real value for thing.
454 454  
455 455  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
456 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
466 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
457 457  **Size(bytes)**
458 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
468 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4**
459 459  |Value|BAT|(% style="width:193px" %)(((
460 460  Temperature(DS18B20)(PC13)
461 461  )))|(% style="width:85px" %)(((
... ... @@ -480,7 +480,7 @@
480 480  (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
481 481  
482 482  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
483 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
493 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**4**
484 484  |Value|BAT|(% style="width:256px" %)(((
485 485  Temperature(DS18B20)(PC13)
486 486  )))|(% style="width:108px" %)(((
... ... @@ -498,9 +498,9 @@
498 498  
499 499  
500 500  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
501 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
511 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
502 502  **Size(bytes)**
503 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
513 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
504 504  |Value|BAT|(% style="width:188px" %)(((
505 505  Temperature(DS18B20)
506 506  (PC13)
... ... @@ -517,9 +517,9 @@
517 517  
518 518  
519 519  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
520 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
530 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
521 521  **Size(bytes)**
522 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
532 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 120px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)2
523 523  |Value|BAT|(% style="width:207px" %)(((
524 524  Temperature(DS18B20)
525 525  (PC13)
... ... @@ -540,9 +540,9 @@
540 540  
541 541  
542 542  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
543 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
553 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
544 544  **Size(bytes)**
545 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
555 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4
546 546  |Value|BAT|(((
547 547  Temperature
548 548  (DS18B20)(PC13)
... ... @@ -579,19 +579,23 @@
579 579  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
580 580  
581 581  
582 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
592 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
583 583  
594 +
595 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
596 +
584 584  In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
585 585  
586 -[[It should be noted when using PWM mode.>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/#H2.3.3.12A0PWMMOD]]
599 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
587 587  
588 588  
589 589  ===== 2.3.2.10.a  Uplink, PWM input capture =====
590 590  
604 +
591 591  [[image:image-20230817172209-2.png||height="439" width="683"]]
592 592  
593 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
594 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
607 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
608 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
595 595  |Value|Bat|(% style="width:191px" %)(((
596 596  Temperature(DS18B20)(PC13)
597 597  )))|(% style="width:78px" %)(((
... ... @@ -598,7 +598,6 @@
598 598  ADC(PA4)
599 599  )))|(% style="width:135px" %)(((
600 600  PWM_Setting
601 -
602 602  &Digital Interrupt(PA8)
603 603  )))|(% style="width:70px" %)(((
604 604  Pulse period
... ... @@ -609,15 +609,57 @@
609 609  [[image:image-20230817170702-1.png||height="161" width="1044"]]
610 610  
611 611  
612 -(% style="color:blue" %)**AT+PWMSET=AA(Default is 0)  ==> Corresponding downlink: 0B AA**
625 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
613 613  
614 -When AA is 0, the unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.  
627 +**Frequency:**
615 615  
616 -When AA is 1, the unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ.  
629 +(% class="MsoNormal" %)
630 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
617 617  
632 +(% class="MsoNormal" %)
633 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
618 618  
619 -===== 2.3.2.10.b  Downlink, PWM output =====
620 620  
636 +(% class="MsoNormal" %)
637 +**Duty cycle:**
638 +
639 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
640 +
641 +[[image:image-20230818092200-1.png||height="344" width="627"]]
642 +
643 +
644 +===== 2.3.2.10.b  Uplink, PWM output =====
645 +
646 +
647 +[[image:image-20230817172209-2.png||height="439" width="683"]]
648 +
649 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
650 +
651 +a is the time delay of the output, the unit is ms.
652 +
653 +b is the output frequency, the unit is HZ.
654 +
655 +c is the duty cycle of the output, the unit is %.
656 +
657 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
658 +
659 +aa is the time delay of the output, the unit is ms.
660 +
661 +bb is the output frequency, the unit is HZ.
662 +
663 +cc is the duty cycle of the output, the unit is %.
664 +
665 +
666 +For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
667 +
668 +The oscilloscope displays as follows:
669 +
670 +[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
671 +
672 +
673 +===== 2.3.2.10.c  Downlink, PWM output =====
674 +
675 +
621 621  [[image:image-20230817173800-3.png||height="412" width="685"]]
622 622  
623 623  Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
... ... @@ -633,7 +633,7 @@
633 633  
634 634  The oscilloscope displays as follows:
635 635  
636 -[[image:image-20230817173858-5.png||height="694" width="921"]]
691 +[[image:image-20230817173858-5.png||height="634" width="843"]]
637 637  
638 638  
639 639  === 2.3.3  ​Decode payload ===
... ... @@ -645,13 +645,13 @@
645 645  
646 646  The payload decoder function for TTN V3 are here:
647 647  
648 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
703 +SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
649 649  
650 650  
651 651  ==== 2.3.3.1 Battery Info ====
652 652  
653 653  
654 -Check the battery voltage for SN50v3-LB.
709 +Check the battery voltage for SN50v3-LB/LS.
655 655  
656 656  Ex1: 0x0B45 = 2885mV
657 657  
... ... @@ -713,10 +713,12 @@
713 713  
714 714  [[image:image-20230811113449-1.png||height="370" width="608"]]
715 715  
771 +
772 +
716 716  ==== 2.3.3.5 Digital Interrupt ====
717 717  
718 718  
719 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
776 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
720 720  
721 721  (% style="color:blue" %)** Interrupt connection method:**
722 722  
... ... @@ -729,18 +729,18 @@
729 729  
730 730  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
731 731  
732 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
789 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
733 733  
734 734  
735 735  (% style="color:blue" %)**Below is the installation example:**
736 736  
737 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
794 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
738 738  
739 739  * (((
740 -One pin to SN50v3-LB's PA8 pin
797 +One pin to SN50v3-LB/LS's PA8 pin
741 741  )))
742 742  * (((
743 -The other pin to SN50v3-LB's VDD pin
800 +The other pin to SN50v3-LB/LS's VDD pin
744 744  )))
745 745  
746 746  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -776,7 +776,7 @@
776 776  
777 777  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
778 778  
779 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
836 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
780 780  
781 781  
782 782  Below is the connection to SHT20/ SHT31. The connection is as below:
... ... @@ -810,7 +810,7 @@
810 810  
811 811  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
812 812  
813 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
870 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
814 814  
815 815  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
816 816  
... ... @@ -819,7 +819,7 @@
819 819  [[image:image-20230512173903-6.png||height="596" width="715"]]
820 820  
821 821  
822 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
879 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
823 823  
824 824  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
825 825  
... ... @@ -831,13 +831,13 @@
831 831  ==== 2.3.3.9  Battery Output - BAT pin ====
832 832  
833 833  
834 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
891 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
835 835  
836 836  
837 837  ==== 2.3.3.10  +5V Output ====
838 838  
839 839  
840 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
897 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
841 841  
842 842  The 5V output time can be controlled by AT Command.
843 843  
... ... @@ -875,9 +875,16 @@
875 875  The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
876 876  )))
877 877  * (((
878 -Since the device can only detect a pulse period of 50ms when AT+PWMSET=0 (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
935 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
936 +)))
937 +* (((
938 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
879 879  
880 -
940 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
941 +
942 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
943 +
944 +b) If the output duration is more than 30 seconds, better to use external power source. 
881 881  )))
882 882  
883 883  ==== 2.3.3.13  Working MOD ====
... ... @@ -913,17 +913,17 @@
913 913  == 2.5 Frequency Plans ==
914 914  
915 915  
916 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
980 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
917 917  
918 918  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
919 919  
920 920  
921 -= 3. Configure SN50v3-LB =
985 += 3. Configure SN50v3-LB/LS =
922 922  
923 923  == 3.1 Configure Methods ==
924 924  
925 925  
926 -SN50v3-LB supports below configure method:
990 +SN50v3-LB/LS supports below configure method:
927 927  
928 928  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
929 929  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -942,10 +942,10 @@
942 942  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
943 943  
944 944  
945 -== 3.3 Commands special design for SN50v3-LB ==
1009 +== 3.3 Commands special design for SN50v3-LB/LS ==
946 946  
947 947  
948 -These commands only valid for SN50v3-LB, as below:
1012 +These commands only valid for SN50v3-LB/LS, as below:
949 949  
950 950  
951 951  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -956,7 +956,7 @@
956 956  (% style="color:blue" %)**AT Command: AT+TDC**
957 957  
958 958  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
959 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
1023 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
960 960  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
961 961  30000
962 962  OK
... ... @@ -991,10 +991,10 @@
991 991  
992 992  Feature, Set Interrupt mode for GPIO_EXIT.
993 993  
994 -(% style="color:blue" %)**AT Command: AT+INTMOD1AT+INTMOD2AT+INTMOD3**
1058 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
995 995  
996 996  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
997 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1061 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
998 998  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
999 999  0
1000 1000  OK
... ... @@ -1038,7 +1038,7 @@
1038 1038  (% style="color:blue" %)**AT Command: AT+5VT**
1039 1039  
1040 1040  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1041 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1105 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1042 1042  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1043 1043  500(default)
1044 1044  OK
... ... @@ -1064,9 +1064,9 @@
1064 1064  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1065 1065  
1066 1066  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1067 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1131 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1068 1068  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1069 -|(% style="width:154px" %)AT+WEIGAP=|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1133 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1070 1070  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1071 1071  
1072 1072  (% style="color:blue" %)**Downlink Command: 0x08**
... ... @@ -1091,7 +1091,7 @@
1091 1091  (% style="color:blue" %)**AT Command: AT+SETCNT**
1092 1092  
1093 1093  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1094 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1158 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1095 1095  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1096 1096  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1097 1097  
... ... @@ -1112,7 +1112,7 @@
1112 1112  (% style="color:blue" %)**AT Command: AT+MOD**
1113 1113  
1114 1114  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1115 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1179 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1116 1116  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1117 1117  OK
1118 1118  )))
... ... @@ -1128,11 +1128,98 @@
1128 1128  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1129 1129  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1130 1130  
1131 -= 4. Battery & Power Consumption =
1195 +=== 3.3.8 PWM setting ===
1132 1132  
1133 1133  
1134 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1198 +Feature: Set the time acquisition unit for PWM input capture.
1135 1135  
1200 +(% style="color:blue" %)**AT Command: AT+PWMSET**
1201 +
1202 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1203 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1204 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1205 +0(default)
1206 +OK
1207 +)))
1208 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1209 +OK
1210 +
1211 +)))
1212 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1213 +
1214 +(% style="color:blue" %)**Downlink Command: 0x0C**
1215 +
1216 +Format: Command Code (0x0C) followed by 1 bytes.
1217 +
1218 +* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1219 +* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1220 +
1221 +
1222 +**Feature: Set PWM output time, output frequency and output duty cycle.**
1223 +
1224 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1225 +
1226 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1227 +|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
1228 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1229 +0,0,0(default)
1230 +OK
1231 +)))
1232 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1233 +OK
1234 +
1235 +)))
1236 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1237 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1238 +
1239 +
1240 +)))|(% style="width:137px" %)(((
1241 +OK
1242 +)))
1243 +
1244 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1245 +|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters**
1246 +|(% colspan="1" rowspan="3" style="width:155px" %)(((
1247 +AT+PWMOUT=a,b,c
1248 +
1249 +
1250 +)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1251 +Set PWM output time, output frequency and output duty cycle.
1252 +
1253 +(((
1254 +
1255 +)))
1256 +
1257 +(((
1258 +
1259 +)))
1260 +)))|(% style="width:242px" %)(((
1261 +a: Output time (unit: seconds)
1262 +The value ranges from 0 to 65535.
1263 +When a=65535, PWM will always output.
1264 +)))
1265 +|(% style="width:242px" %)(((
1266 +b: Output frequency (unit: HZ)
1267 +)))
1268 +|(% style="width:242px" %)(((
1269 +c: Output duty cycle (unit: %)
1270 +The value ranges from 0 to 100.
1271 +)))
1272 +
1273 +(% style="color:blue" %)**Downlink Command: 0x0B01**
1274 +
1275 +Format: Command Code (0x0B01) followed by 6 bytes.
1276 +
1277 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1278 +
1279 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1280 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1281 +
1282 += 4. Battery & Power Cons =
1283 +
1284 +
1285 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1286 +
1136 1136  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1137 1137  
1138 1138  
... ... @@ -1140,7 +1140,7 @@
1140 1140  
1141 1141  
1142 1142  (% class="wikigeneratedid" %)
1143 -**User can change firmware SN50v3-LB to:**
1294 +**User can change firmware SN50v3-LB/LS to:**
1144 1144  
1145 1145  * Change Frequency band/ region.
1146 1146  * Update with new features.
... ... @@ -1155,22 +1155,22 @@
1155 1155  
1156 1156  = 6. FAQ =
1157 1157  
1158 -== 6.1 Where can i find source code of SN50v3-LB? ==
1309 +== 6.1 Where can i find source code of SN50v3-LB/LS? ==
1159 1159  
1160 1160  
1161 1161  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1162 1162  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1163 1163  
1164 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1315 +== 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
1165 1165  
1166 1166  
1167 1167  See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1168 1168  
1169 1169  
1170 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1321 +== 6.3 How to put several sensors to a SN50v3-LB/LS? ==
1171 1171  
1172 1172  
1173 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1324 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1174 1174  
1175 1175  [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1176 1176  
... ... @@ -1180,7 +1180,7 @@
1180 1180  = 7. Order Info =
1181 1181  
1182 1182  
1183 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1334 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1184 1184  
1185 1185  (% style="color:red" %)**XX**(%%): The default frequency band
1186 1186  
... ... @@ -1205,7 +1205,7 @@
1205 1205  
1206 1206  (% style="color:#037691" %)**Package Includes**:
1207 1207  
1208 -* SN50v3-LB LoRaWAN Generic Node
1359 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1209 1209  
1210 1210  (% style="color:#037691" %)**Dimension and weight**:
1211 1211  
image-20230818092200-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +230.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0