Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 21 added, 0 removed)
- image-20230511203450-2.png
- image-20230512163509-1.png
- image-20230512164658-2.png
- image-20230512170701-3.png
- image-20230512172447-4.png
- image-20230512173758-5.png
- image-20230512173903-6.png
- image-20230512180609-7.png
- image-20230512180718-8.png
- image-20230512181814-9.png
- image-20230513084523-1.png
- image-20230513102034-2.png
- image-20230513103633-3.png
- image-20230513105207-4.png
- image-20230513105351-5.png
- image-20230513110214-6.png
- image-20230513111203-7.png
- image-20230513111231-8.png
- image-20230513111255-9.png
- image-20230513134006-1.png
- image-20230515135611-1.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB User Manual 1 +SN50v3-LB LoRaWAN Sensor Node User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Edwin1 +XWiki.Xiaoling - Content
-
... ... @@ -1,4 +1,5 @@ 1 -[[image:image-20230511201248-1.png||height="403" width="489"]] 1 +(% style="text-align:center" %) 2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 2 2 3 3 4 4 ... ... @@ -15,23 +15,21 @@ 15 15 16 16 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 17 17 19 + 18 18 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 19 19 20 - 21 21 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 22 22 23 - 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 26 - 27 27 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 28 28 29 - 30 30 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 31 31 32 32 33 33 == 1.2 Features == 34 34 33 + 35 35 * LoRaWAN 1.0.3 Class A 36 36 * Ultra-low power consumption 37 37 * Open-Source hardware/software ... ... @@ -44,6 +44,7 @@ 44 44 45 45 == 1.3 Specification == 46 46 46 + 47 47 (% style="color:#037691" %)**Common DC Characteristics:** 48 48 49 49 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -80,6 +80,7 @@ 80 80 81 81 == 1.4 Sleep mode and working mode == 82 82 83 + 83 83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 84 84 85 85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -122,6 +122,7 @@ 122 122 == 1.7 Pin Definitions == 123 123 124 124 126 +[[image:image-20230513102034-2.png]] 125 125 126 126 127 127 == 1.8 Mechanical == ... ... @@ -136,6 +136,7 @@ 136 136 137 137 == Hole Option == 138 138 141 + 139 139 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 140 140 141 141 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -143,12 +143,12 @@ 143 143 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]] 144 144 145 145 146 -= 2. Configure S3 1x-LB to connect to LoRaWAN network =149 += 2. Configure SN50v3-LB to connect to LoRaWAN network = 147 147 148 148 == 2.1 How it works == 149 149 150 150 151 -The S3 1x-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.154 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 152 152 153 153 154 154 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -159,11 +159,11 @@ 159 159 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 160 160 161 161 162 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from S3 1x-LB.165 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. 163 163 164 -Each S3 1x-LB is shipped with a sticker with the default device EUI as below:167 +Each SN50v3-LB is shipped with a sticker with the default device EUI as below: 165 165 166 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 169 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]] 167 167 168 168 169 169 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: ... ... @@ -190,10 +190,10 @@ 190 190 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 191 191 192 192 193 -(% style="color:blue" %)**Step 2:**(%%) Activate onS31x-LB196 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB 194 194 195 195 196 -Press the button for 5 seconds to activate the S3 1x-LB.199 +Press the button for 5 seconds to activate the SN50v3-LB. 197 197 198 198 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 199 199 ... ... @@ -205,7 +205,7 @@ 205 205 === 2.3.1 Device Status, FPORT~=5 === 206 206 207 207 208 -Users can use the downlink command(**0x26 01**) to ask S3 1x-LBto send device configure detail, include device configure status. S31x-LBwill uplink a payload via FPort=5 to server.211 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 209 209 210 210 The Payload format is as below. 211 211 ... ... @@ -217,11 +217,9 @@ 217 217 218 218 Example parse in TTNv3 219 219 220 -[[image:image-20230421171614-1.png||alt="图片-20230421171614-1.png"]] 221 221 224 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 222 222 223 -(% style="color:#037691" %)**Sensor Model**(%%): For S31x-LB, this value is 0x0A 224 - 225 225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 226 226 227 227 (% style="color:#037691" %)**Frequency Band**: ... ... @@ -273,41 +273,346 @@ 273 273 Ex2: 0x0B49 = 2889mV 274 274 275 275 276 -=== 2.3.2 277 +=== 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 277 277 278 278 279 -Sen sorDataisuplinkviaFPORT=2280 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 280 280 281 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %) 282 -|=(% style="width: 90px;background-color:#D9E2F3" %)((( 282 +For example: 283 + 284 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 285 + 286 + 287 +(% style="color:red" %) **Important Notice:** 288 + 289 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 290 +1. All modes share the same Payload Explanation from HERE. 291 +1. By default, the device will send an uplink message every 20 minutes. 292 + 293 +==== 2.3.2.1 MOD~=1 (Default Mode) ==== 294 + 295 + 296 +In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 297 + 298 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 299 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 300 +|**Value**|Bat|(% style="width:191px" %)((( 301 +Temperature(DS18B20)(PC13) 302 +)))|(% style="width:78px" %)((( 303 +ADC(PA4) 304 +)))|(% style="width:216px" %)((( 305 +Digital in(PB15)&Digital Interrupt(PA8) 306 +)))|(% style="width:308px" %)((( 307 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 308 +)))|(% style="width:154px" %)((( 309 +Humidity(SHT20 or SHT31) 310 +))) 311 + 312 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 313 + 314 + 315 + 316 +==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 317 + 318 + 319 +This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 320 + 321 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 322 +|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 323 +|**Value**|BAT|(% style="width:196px" %)((( 324 +Temperature(DS18B20)(PC13) 325 +)))|(% style="width:87px" %)((( 326 +ADC(PA4) 327 +)))|(% style="width:189px" %)((( 328 +Digital in(PB15) & Digital Interrupt(PA8) 329 +)))|(% style="width:208px" %)((( 330 +Distance measure by:1) LIDAR-Lite V3HP 331 +Or 2) Ultrasonic Sensor 332 +)))|(% style="width:117px" %)Reserved 333 + 334 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 335 + 336 + 337 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 338 + 339 +[[image:image-20230512173758-5.png||height="563" width="712"]] 340 + 341 + 342 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 343 + 344 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 345 + 346 +[[image:image-20230512173903-6.png||height="596" width="715"]] 347 + 348 + 349 +For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 350 + 351 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 352 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 353 +|**Value**|BAT|(% style="width:183px" %)((( 354 +Temperature(DS18B20)(PC13) 355 +)))|(% style="width:173px" %)((( 356 +Digital in(PB15) & Digital Interrupt(PA8) 357 +)))|(% style="width:84px" %)((( 358 +ADC(PA4) 359 +)))|(% style="width:323px" %)((( 360 +Distance measure by:1)TF-Mini plus LiDAR 361 +Or 362 +2) TF-Luna LiDAR 363 +)))|(% style="width:188px" %)Distance signal strength 364 + 365 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 366 + 367 + 368 +**Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 369 + 370 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 371 + 372 +[[image:image-20230512180609-7.png||height="555" width="802"]] 373 + 374 + 375 +**Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 376 + 377 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 378 + 379 +[[image:image-20230513105207-4.png||height="469" width="802"]] 380 + 381 + 382 +==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 383 + 384 + 385 +This mode has total 12 bytes. Include 3 x ADC + 1x I2C 386 + 387 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 388 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 283 283 **Size(bytes)** 284 -)))|=(% style="width: 80px;background-color:#D9E2F3" %)2|=(% style="width: 90px;background-color:#D9E2F3" %)4|=(% style="width:80px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)2 285 -|(% style="width:99px" %)**Value**|(% style="width:69px" %)((( 286 -[[Battery>>||anchor="HBattery:"]] 287 -)))|(% style="width:130px" %)((( 288 -[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]] 289 -)))|(% style="width:91px" %)((( 290 -[[Alarm Flag>>||anchor="HAlarmFlag26MOD:"]] 291 -)))|(% style="width:103px" %)((( 292 -[[Temperature>>||anchor="HTemperature:"]] 293 -)))|(% style="width:80px" %)((( 294 -[[Humidity>>||anchor="HHumidity:"]] 390 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 391 +|**Value**|(% style="width:68px" %)((( 392 +ADC1(PA4) 393 +)))|(% style="width:75px" %)((( 394 +ADC2(PA5) 395 +)))|((( 396 +ADC3(PA8) 397 +)))|((( 398 +Digital Interrupt(PB15) 399 +)))|(% style="width:304px" %)((( 400 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 401 +)))|(% style="width:163px" %)((( 402 +Humidity(SHT20 or SHT31) 403 +)))|(% style="width:53px" %)Bat 404 + 405 +[[image:image-20230513110214-6.png]] 406 + 407 + 408 +==== 2.3.2.4 MOD~=4 (3 x DS18B20) ==== 409 + 410 + 411 +This mode has total 11 bytes. As shown below: 412 + 413 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 414 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 415 +|**Value**|BAT|(% style="width:186px" %)((( 416 +Temperature1(DS18B20)(PC13) 417 +)))|(% style="width:82px" %)((( 418 +ADC(PA4) 419 +)))|(% style="width:210px" %)((( 420 +Digital in(PB15) & Digital Interrupt(PA8) 421 +)))|(% style="width:191px" %)Temperature2(DS18B20) 422 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 423 + 424 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 425 + 426 +[[image:image-20230513134006-1.png||height="559" width="736"]] 427 + 428 + 429 + 430 +==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 431 + 432 + 433 +[[image:image-20230512164658-2.png||height="532" width="729"]] 434 + 435 +Each HX711 need to be calibrated before used. User need to do below two steps: 436 + 437 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 438 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 439 +1. ((( 440 +Weight has 4 bytes, the unit is g. 295 295 ))) 296 296 297 - ==== (% style="color:#4472c4"%)**Battery**(%%) ====443 +For example: 298 298 299 -S ensor BatteryLevel.445 +**AT+GETSENSORVALUE =0** 300 300 447 +Response: Weight is 401 g 448 + 449 +Check the response of this command and adjust the value to match the real value for thing. 450 + 451 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 452 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 453 +**Size(bytes)** 454 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 455 +|**Value**|BAT|(% style="width:193px" %)((( 456 +Temperature(DS18B20) 457 +(PC13) 458 +)))|(% style="width:85px" %)((( 459 +ADC(PA4) 460 +)))|(% style="width:186px" %)((( 461 +Digital in(PB15) & 462 +Digital Interrupt(PA8) 463 +)))|(% style="width:100px" %)Weight 464 + 465 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 466 + 467 + 468 + 469 +==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 470 + 471 + 472 +In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 473 + 474 +Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. 475 + 476 +[[image:image-20230512181814-9.png||height="543" width="697"]] 477 + 478 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 479 + 480 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 481 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 482 +|**Value**|BAT|(% style="width:256px" %)((( 483 +Temperature(DS18B20)(PC13) 484 +)))|(% style="width:108px" %)((( 485 +ADC(PA4) 486 +)))|(% style="width:126px" %)((( 487 +Digital in(PB15) 488 +)))|(% style="width:145px" %)((( 489 +Count(PA8) 490 +))) 491 + 492 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 493 + 494 + 495 + 496 +==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 497 + 498 + 499 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 500 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 501 +**Size(bytes)** 502 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 503 +|**Value**|BAT|(% style="width:188px" %)((( 504 +Temperature(DS18B20) 505 +(PC13) 506 +)))|(% style="width:83px" %)((( 507 +ADC(PA5) 508 +)))|(% style="width:184px" %)((( 509 +Digital Interrupt1(PA8) 510 +)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved 511 + 512 +[[image:image-20230513111203-7.png||height="324" width="975"]] 513 + 514 + 515 +==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 516 + 517 + 518 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 519 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 520 +**Size(bytes)** 521 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 522 +|**Value**|BAT|(% style="width:207px" %)((( 523 +Temperature(DS18B20) 524 +(PC13) 525 +)))|(% style="width:94px" %)((( 526 +ADC1(PA4) 527 +)))|(% style="width:198px" %)((( 528 +Digital Interrupt(PB15) 529 +)))|(% style="width:84px" %)((( 530 +ADC2(PA5) 531 +)))|(% style="width:82px" %)((( 532 +ADC3(PA8) 533 +))) 534 + 535 +[[image:image-20230513111231-8.png||height="335" width="900"]] 536 + 537 + 538 +==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 539 + 540 + 541 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 542 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 543 +**Size(bytes)** 544 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 545 +|**Value**|BAT|((( 546 +Temperature1(DS18B20) 547 +(PC13) 548 +)))|((( 549 +Temperature2(DS18B20) 550 +(PB9) 551 +)))|((( 552 +Digital Interrupt 553 +(PB15) 554 +)))|(% style="width:193px" %)((( 555 +Temperature3(DS18B20) 556 +(PB8) 557 +)))|(% style="width:78px" %)((( 558 +Count1(PA8) 559 +)))|(% style="width:78px" %)((( 560 +Count2(PA4) 561 +))) 562 + 563 +[[image:image-20230513111255-9.png||height="341" width="899"]] 564 + 565 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 566 + 567 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 568 + 569 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 570 + 571 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 572 + 573 + 574 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 575 + 576 +When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 577 + 578 +When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 579 + 580 + 581 +=== 2.3.3 Decode payload === 582 + 583 + 584 +While using TTN V3 network, you can add the payload format to decode the payload. 585 + 586 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] 587 + 588 +The payload decoder function for TTN V3 are here: 589 + 590 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 591 + 592 + 593 +==== 2.3.3.1 Battery Info ==== 594 + 595 + 596 +Check the battery voltage for SN50v3. 597 + 301 301 Ex1: 0x0B45 = 2885mV 302 302 303 303 Ex2: 0x0B49 = 2889mV 304 304 305 305 603 +==== 2.3.3.2 Temperature (DS18B20) ==== 306 306 307 -==== (% style="color:#4472c4" %)**Temperature**(%%) ==== 308 308 309 - **Example**:606 +If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 310 310 608 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 609 + 610 +(% style="color:blue" %)**Connection:** 611 + 612 +[[image:image-20230512180718-8.png||height="538" width="647"]] 613 + 614 + 615 +(% style="color:blue" %)**Example**: 616 + 311 311 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 312 312 313 313 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -315,200 +315,232 @@ 315 315 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative) 316 316 317 317 318 -==== (%style="color:#4472c4"%)**Humidity**(%%)====624 +==== 2.3.3.3 Digital Input ==== 319 319 320 320 321 - Read:0x(0197)=412Value:412/10=41.2,So 41.2%627 +The digital input for pin PB15, 322 322 629 +* When PB15 is high, the bit 1 of payload byte 6 is 1. 630 +* When PB15 is low, the bit 1 of payload byte 6 is 0. 323 323 324 -==== (% style="color:#4472c4" %)**Alarm Flag& MOD**(%%) ==== 632 +(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %) 633 +((( 634 +When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 325 325 636 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 326 326 327 -**Example:** 638 + 639 +))) 328 328 329 - Ifpayload& 0x01 = 0x01 **~-~->** Thisisan AlarmMessage641 +==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 330 330 331 -If payload & 0x01 = 0x00 **~-~->** This is a normal uplink message, no alarm 332 332 333 - Ifpayload>>2=0x00**~-~->**means MOD=1,Thisisa samplinguplinkmessage644 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 334 334 335 - Ifpayload>>2=0x31**~-~->**meansMOD=31, thismessage isareplymessagefor polling,thismessagecontains thealarmsettings.see[[this link>>path:#HPolltheAlarmsettings:]]fordetail.646 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 336 336 648 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 337 337 338 - ==2.4 Payload Decoderfile==650 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 339 339 340 340 341 - InTTN,usecan add a custom payloadso itshows friendlyreading653 +==== 2.3.3.5 Digital Interrupt ==== 342 342 343 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 344 344 345 - [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B>>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]656 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 346 346 658 +(% style="color:blue" %)** Interrupt connection method:** 347 347 348 - == 2.5 DatalogFeature ==660 +[[image:image-20230513105351-5.png||height="147" width="485"]] 349 349 350 350 351 - DatalogFeature isoensure IoT Servercan get all samplingdata fromSensoreveniftheLoRaWAN network isdown. Foreachsampling, S31x-LB willstorethe reading for future retrieving purposes.663 +(% style="color:blue" %)**Example to use with door sensor :** 352 352 665 +The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 353 353 354 - === 2.5.1 Ways togettalog via=667 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 355 355 669 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 356 356 357 -Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 358 358 359 -* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server. 360 -* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages. 672 +(% style="color:blue" %)**Below is the installation example:** 361 361 362 - Belowisthe typicalcasefor theauto-updatedatalogfeature(SetPNACKMD=1)674 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 363 363 364 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 676 +* ((( 677 +One pin to SN50_v3's PA8 pin 678 +))) 679 +* ((( 680 +The other pin to SN50_v3's VDD pin 681 +))) 365 365 366 - ===2.5.2UnixTimeStamp===683 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 367 367 685 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 368 368 369 - S31x-LBusesUnixTimeStampformatbasedon687 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 370 370 371 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/L HT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png"height="97" width="627"]]689 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]] 372 372 373 - Usercan getthis timefromlink: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]]:691 +The above photos shows the two parts of the magnetic switch fitted to a door. 374 374 375 - Belowis theconverter example693 +The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt. 376 376 377 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png"height="298" width="720"]]695 +The command is: 378 378 379 - So,weanuse AT+TIMESTAMP=1611889405ordownlink 3060137afd00to setthe current time2021– Jan~-~- 29 Friday03:03:25697 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 380 380 699 +Below shows some screen captures in TTN V3: 381 381 382 - === 2.5.3Set DeviceTime=701 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 383 383 384 384 385 - User needto set(%style="color:blue"%)**SYNCMOD=1**(%%) to enablesynctimeviaMAC command.704 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 386 386 387 - Once S31x-LB JoinedLoRaWAN network,it will send the MAC command(DeviceTimeReq) and the server will replywith (DeviceTimeAns)tosend the current time to S31x-LB.If S31x-LB fails to get the time from the server,S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).706 +door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 388 388 389 -(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 390 390 709 +==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 391 391 392 -=== 2.5.4 Datalog Uplink payload (FPORT~=3) === 393 393 712 +The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 394 394 395 - TheDataloguplinks willusebelowpayloadformat.714 +We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 396 396 397 - **Retrievaldata payload:**716 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference. 398 398 399 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 400 -|=(% style="width: 80px;background-color:#D9E2F3" %)((( 401 -**Size(bytes)** 402 -)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4** 403 -|(% style="width:103px" %)**Value**|(% style="width:54px" %)((( 404 -[[Temp_Black>>||anchor="HTemperatureBlack:"]] 405 -)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]] 718 +Below is the connection to SHT20/ SHT31. The connection is as below: 406 406 407 -**Poll message flag & Ext:** 408 408 409 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png"height="112" width="754"]]721 +[[image:image-20230513103633-3.png||height="448" width="716"]] 410 410 411 - **No ACK Message**: 1:This messagemeans thispayloadis fromn UplinkMessagewhich doesn't getACK fromthe server before(for**PNACKMD=1**feature)723 +The device will be able to get the I2C sensor data now and upload to IoT Server. 412 412 413 - **Poll MessageFlag**:1: This messageispoll messagey.725 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] 414 414 415 - * PollMessageFlagis setto1.727 +Convert the read byte to decimal and divide it by ten. 416 416 417 -* ch data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.729 +**Example:** 418 418 419 - Forexample, in US915 band,themax payloadfordifferentDRis:731 +Temperature: Read:0116(H) = 278(D) Value: 278 /10=27.8℃; 420 420 421 - **a)DR0:**maxis11bytessooneentryofdata733 +Humidity: Read:0248(H)=584(D) Value: 584 / 10=58.4, So 58.4% 422 422 423 - **b)DR1:**maxis53 bytessodeviceswill upload4entriesofdata(total44 bytes)735 +If you want to use other I2C device, please refer the SHT20 part source code as reference. 424 424 425 -**c) DR2:** total payload includes 11 entries of data 426 426 427 - **d)DR3:**total payload includes22entriesof data.738 +==== 2.3.3.7 Distance Reading ==== 428 428 429 -If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0 430 430 741 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 431 431 743 + 744 +==== 2.3.3.8 Ultrasonic Sensor ==== 745 + 746 + 747 +This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 748 + 749 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 750 + 751 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 752 + 753 +The picture below shows the connection: 754 + 755 +[[image:image-20230512173903-6.png||height="596" width="715"]] 756 + 757 + 758 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 759 + 760 +The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 761 + 432 432 **Example:** 433 433 434 - If S31x-LB hasbelow datainsideFlash:764 +Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 435 435 436 -[[image:1682646494051-944.png]] 437 437 438 - Ifusersendsbelowdownlinkcommand: 3160065F9760066DA705767 +==== 2.3.3.9 Battery Output - BAT pin ==== 439 439 440 -Where : Start time: 60065F97 = time 21/1/19 04:27:03 441 441 442 - Stop time:60066DA7=time21/1/1905:27:03770 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 443 443 444 444 445 - **S31x-LBwilluplinkthispayload.**773 +==== 2.3.3.10 +5V Output ==== 446 446 447 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]] 448 448 449 -((( 450 -__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E 451 -))) 776 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 452 452 453 -((( 454 -Where the first 11 bytes is for the first entry: 455 -))) 778 +The 5V output time can be controlled by AT Command. 456 456 457 -((( 458 -7FFF089801464160065F97 459 -))) 780 +(% style="color:blue" %)**AT+5VT=1000** 460 460 461 -((( 462 -**Ext sensor data**=0x7FFF/100=327.67 463 -))) 782 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 464 464 465 -((( 466 -**Temp**=0x088E/100=22.00 467 -))) 784 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 468 468 469 -((( 470 -**Hum**=0x014B/10=32.6 471 -))) 472 472 473 -((( 474 -**poll message flag & Ext**=0x41,means reply data,Ext=1 475 -))) 787 +==== 2.3.3.11 BH1750 Illumination Sensor ==== 476 476 477 -((( 478 -**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03 479 -))) 480 480 790 +MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 481 481 482 - (% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true"height="15"role="presentation" title="单击并拖动以移动"width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的792 +[[image:image-20230512172447-4.png||height="416" width="712"]] 483 483 484 -== 2.6 Temperature Alarm Feature == 485 485 795 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 486 486 487 -S31x-LB work flow with Alarm feature. 488 488 798 +==== 2.3.3.12 Working MOD ==== 489 489 490 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]] 491 491 801 +The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 492 492 493 - ==2.7FrequencyPlans==803 +User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: 494 494 805 +Case 7^^th^^ Byte >> 2 & 0x1f: 495 495 496 -The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 807 +* 0: MOD1 808 +* 1: MOD2 809 +* 2: MOD3 810 +* 3: MOD4 811 +* 4: MOD5 812 +* 5: MOD6 813 +* 6: MOD7 814 +* 7: MOD8 815 +* 8: MOD9 497 497 817 + 818 + 819 +== 2.4 Payload Decoder file == 820 + 821 + 822 +In TTN, use can add a custom payload so it shows friendly reading 823 + 824 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 825 + 826 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 827 + 828 + 829 +== 2.5 Frequency Plans == 830 + 831 + 832 +The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 833 + 498 498 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 499 499 500 500 501 -= 3. Configure S3 1x-LB =837 += 3. Configure SN50v3-LB = 502 502 503 503 == 3.1 Configure Methods == 504 504 505 505 506 -S3 1x-LB supports below configure method:842 +SN50v3-LB supports below configure method: 507 507 508 508 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 509 509 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 510 510 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 511 511 848 + 849 + 512 512 == 3.2 General Commands == 513 513 514 514 ... ... @@ -522,7 +522,7 @@ 522 522 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 523 523 524 524 525 -== 3.3 Commands special design for S3 1x-LB ==863 +== 3.3 Commands special design for SN50v3-LB == 526 526 527 527 528 528 These commands only valid for S31x-LB, as below: ... ... @@ -558,120 +558,155 @@ 558 558 559 559 === 3.3.2 Get Device Status === 560 560 899 +Send a LoRaWAN downlink to ask the device to send its status. 561 561 562 -Send a LoRaWAN downlink to ask device send Alarm settings. 563 - 564 564 (% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 565 565 566 566 Sensor will upload Device Status via FPORT=5. See payload section for detail. 567 567 568 568 569 -=== 3.3.3 Set TemperatureAlarm Threshold ===906 +=== 3.3.3 Set Interrupt Mode === 570 570 571 - *(%style="color:blue"%)**AT Command:**908 +Feature, Set Interrupt mode for GPIO_EXIT. 572 572 573 -(% style="color: #037691" %)**AT+SHTEMP=min,max**910 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 574 574 575 -* When min=0, and max≠0, Alarm higher than max 576 -* When min≠0, and max=0, Alarm lower than min 577 -* When min≠0 and max≠0, Alarm higher than max or lower than min 912 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 913 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 914 +|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 915 +0 916 +OK 917 +the mode is 0 =Disable Interrupt 918 +))) 919 +|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)((( 920 +Set Transmit Interval 921 +0. (Disable Interrupt), 922 +~1. (Trigger by rising and falling edge) 923 +2. (Trigger by falling edge) 924 +3. (Trigger by rising edge) 925 +)))|(% style="width:157px" %)OK 926 +|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 927 +Set Transmit Interval 578 578 579 -Example: 929 +trigger by rising edge. 930 +)))|(% style="width:157px" %)OK 931 +|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK 580 580 581 - AT+SHTEMP=0,30 ~/~/ Alarmwhentemperature higher than30.933 +(% style="color:blue" %)**Downlink Command: 0x06** 582 582 583 - * (% style="color:blue"%)**Downlink Payload:**935 +Format: Command Code (0x06) followed by 3 bytes. 584 584 585 - (%style="color:#037691"%)**0x(0C01001E)**(%%)~/~/SetAT+SHTEMP=0,30937 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 586 586 587 -(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)** 939 +* Example 1: Downlink Payload: 06000000 **~-~-->** AT+INTMOD1=0 940 +* Example 2: Downlink Payload: 06000003 **~-~-->** AT+INTMOD1=3 941 +* Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 942 +* Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 588 588 944 +=== 3.3.4 Set Power Output Duration === 589 589 590 - ===3.3.4 SetHumidityAlarmThreshold===946 +Control the output duration 5V . Before each sampling, device will 591 591 592 - *(%style="color:blue"%)**ATCommand:**948 +~1. first enable the power output to external sensor, 593 593 594 - (%style="color:#037691"%)**AT+SHHUM=min,max**950 +2. keep it on as per duration, read sensor value and construct uplink payload 595 595 596 -* When min=0, and max≠0, Alarm higher than max 597 -* When min≠0, and max=0, Alarm lower than min 598 -* When min≠0 and max≠0, Alarm higher than max or lower than min 952 +3. final, close the power output. 599 599 600 - Example:954 +(% style="color:blue" %)**AT Command: AT+5VT** 601 601 602 - AT+SHHUM=70,0 ~/~/ Alarm when humidity lower than 70%. 956 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 957 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 958 +|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 959 +500(default) 960 +OK 961 +))) 962 +|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( 963 +Close after a delay of 1000 milliseconds. 964 +)))|(% style="width:157px" %)OK 603 603 604 - *(% style="color:blue" %)**DownlinkPayload:**966 +(% style="color:blue" %)**Downlink Command: 0x07** 605 605 606 - (% style="color:#037691"%)**0x(0C024600)**(%%)~/~/ SetAT+SHTHUM=70,0968 +Format: Command Code (0x07) followed by 2 bytes. 607 607 608 - (%style="color:red" %)**(note: 3^^rd^^byte=0x46 forlow limit(70%), 4^^th^^byte= 0x00 forhigh limit(notset))**970 +The first and second bytes are the time to turn on. 609 609 972 +* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 973 +* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 610 610 611 -=== 3.3.5 Set AlarmInterval===975 +=== 3.3.5 Set Weighing parameters === 612 612 613 - Theshortesttimeof twoAlarmpacket.(unit:min)977 +Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 614 614 615 - *(% style="color:blue" %)**AT Command:**979 +(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 616 616 617 -(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes. 981 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 982 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 983 +|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 984 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 985 +|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 618 618 619 - *(% style="color:blue" %)**DownlinkPayload:**987 +(% style="color:blue" %)**Downlink Command: 0x08** 620 620 621 - (% style="color:#037691"%)**0x(0D 00 1E)**(%%)**~-~--> ** SetAT+ATDC=0x001E=30minutes989 +Format: Command Code (0x08) followed by 2 bytes or 4 bytes. 622 622 991 +Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes. 623 623 624 - ===3.3.6 GetAlarmsettings===993 +The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value. 625 625 995 +* Example 1: Downlink Payload: 0801 **~-~-->** AT+WEIGRE 996 +* Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 997 +* Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 626 626 627 - SendaLoRaWAN downlinktoaskdevicesendAlarm settings.999 +=== 3.3.6 Set Digital pulse count value === 628 628 629 - *(%style="color:#037691" %)**DownlinkPayload: **(%%)0x0E 011001 +Feature: Set the pulse count value. 630 630 631 - **Example:**1003 +Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. 632 632 633 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]1005 +(% style="color:blue" %)**AT Command: AT+SETCNT** 634 634 1007 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1008 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1009 +|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1010 +|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 635 635 636 -** Explain:**1012 +(% style="color:blue" %)**Downlink Command: 0x09** 637 637 638 - * Alarm& MOD bitis 0x7C,0x7C>> 2 =0x31:MeansthismessageistheAlarmsettings message.1014 +Format: Command Code (0x09) followed by 5 bytes. 639 639 640 - ===3.3.7SetInterruptMode===1016 +The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized. 641 641 1018 +* Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1019 +* Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 642 642 643 - Feature,SetInterruptmodefor GPIO_EXIT.1021 +=== 3.3.7 Set Workmode === 644 644 645 - (% style="color:blue"%)**ATCommand:AT+INTMOD**1023 +Feature: Switch working mode. 646 646 1025 +(% style="color:blue" %)**AT Command: AT+MOD** 1026 + 647 647 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 648 648 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 649 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 650 -0 1029 +|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 651 651 OK 652 -the mode is 0 =Disable Interrupt 653 653 ))) 654 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 655 -Set Transmit Interval 656 -0. (Disable Interrupt), 657 -~1. (Trigger by rising and falling edge) 658 -2. (Trigger by falling edge) 659 -3. (Trigger by rising edge) 660 -)))|(% style="width:157px" %)OK 1032 +|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1033 +OK 1034 +Attention:Take effect after ATZ 1035 +))) 661 661 662 -(% style="color:blue" %)**Downlink Command: 0x0 6**1037 +(% style="color:blue" %)**Downlink Command: 0x0A** 663 663 664 -Format: Command Code (0x0 6) followed by3bytes.1039 +Format: Command Code (0x0A) followed by 1 bytes. 665 665 666 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 1041 +* Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1042 +* Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 667 667 668 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 669 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 670 - 671 671 = 4. Battery & Power Consumption = 672 672 673 673 674 -S3 1x-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.1047 +SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 675 675 676 676 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 677 677 ... ... @@ -680,7 +680,7 @@ 680 680 681 681 682 682 (% class="wikigeneratedid" %) 683 -User can change firmware S3 1x-LB to:1056 +User can change firmware SN50v3-LB to: 684 684 685 685 * Change Frequency band/ region. 686 686 * Update with new features. ... ... @@ -696,47 +696,45 @@ 696 696 697 697 = 6. FAQ = 698 698 1072 +== 6.1 Where can i find source code of SN50v3-LB? == 699 699 1074 +* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1075 +* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 700 700 701 701 = 7. Order Info = 702 702 703 703 704 -Part Number: 1-LB-XX/ S31B-LB-XX**1080 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** 705 705 706 706 (% style="color:red" %)**XX**(%%): The default frequency band 707 707 708 708 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 709 - 710 710 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 711 - 712 712 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 713 - 714 714 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 715 - 716 716 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 717 - 718 718 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 719 - 720 720 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 721 - 722 722 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 723 723 724 -= =1093 +(% style="color:red" %)**YY: ** (%%)Hole Option 725 725 1095 +* (% style="color:red" %)**12**(%%): With M12 waterproof cable hole 1096 +* (% style="color:red" %)**16**(%%): With M16 waterproof cable hole 1097 +* (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1098 +* (% style="color:red" %)**NH**(%%): No Hole 1099 + 726 726 = 8. Packing Info = 727 727 728 728 (% style="color:#037691" %)**Package Includes**: 729 729 730 -* S3 1x-LB LoRaWANTemperature & HumiditySensor1104 +* SN50v3-LB LoRaWAN Generic Node 731 731 732 732 (% style="color:#037691" %)**Dimension and weight**: 733 733 734 734 * Device Size: cm 735 - 736 736 * Device Weight: g 737 - 738 738 * Package Size / pcs : cm 739 - 740 740 * Weight / pcs : g 741 741 742 742 = 9. Support = ... ... @@ -743,4 +743,5 @@ 743 743 744 744 745 745 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 746 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1117 + 1118 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
- image-20230511203450-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +679.1 KB - Content
- image-20230512163509-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content
- image-20230512164658-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.0 MB - Content
- image-20230512170701-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.5 MB - Content
- image-20230512172447-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.0 MB - Content
- image-20230512173758-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.1 MB - Content
- image-20230512173903-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.3 MB - Content
- image-20230512180609-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.3 MB - Content
- image-20230512180718-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.3 MB - Content
- image-20230512181814-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.2 MB - Content
- image-20230513084523-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +611.3 KB - Content
- image-20230513102034-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +607.1 KB - Content
- image-20230513103633-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +595.5 KB - Content
- image-20230513105207-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +384.7 KB - Content
- image-20230513105351-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.6 KB - Content
- image-20230513110214-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +172.7 KB - Content
- image-20230513111203-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +79.9 KB - Content
- image-20230513111231-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +64.9 KB - Content
- image-20230513111255-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +70.4 KB - Content
- image-20230513134006-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.9 MB - Content
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.0 KB - Content