Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 7 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor Node User Manual 1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Saxer1 +XWiki.Xiaoling - Content
-
... ... @@ -1,10 +1,15 @@ 1 + 2 + 1 1 (% style="text-align:center" %) 2 -[[image:image-202 30515135611-1.jpeg||height="589" width="589"]]4 +[[image:image-20240103095714-2.png]] 3 3 4 4 5 5 6 -**Table of Contents:** 7 7 9 + 10 + 11 +**Table of Contents:** 12 + 8 8 {{toc/}} 9 9 10 10 ... ... @@ -14,20 +14,19 @@ 14 14 15 15 = 1. Introduction = 16 16 17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node == 22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node == 18 18 19 19 20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%) or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphonedetection,building automation, andso on.27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 23 23 24 -(% style="color:blue" %)** SN50V3-LB **(%%)has a powerful48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors. 25 25 26 -(% style="color:blue" %)** SN50V3-LB**(%%) has abuilt-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining. 27 27 28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 - 31 31 == 1.2 Features == 32 32 33 33 ... ... @@ -39,7 +39,8 @@ 39 39 * Support wireless OTA update firmware 40 40 * Uplink on periodically 41 41 * Downlink to change configure 42 -* 8500mAh Battery for long term use 46 +* 8500mAh Li/SOCl2 Battery (SN50v3-LB) 47 +* Solar panel + 3000mAh Li-on battery (SN50v3-LS) 43 43 44 44 == 1.3 Specification == 45 45 ... ... @@ -46,7 +46,7 @@ 46 46 47 47 (% style="color:#037691" %)**Common DC Characteristics:** 48 48 49 -* Supply Voltage: built8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v54 +* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v 50 50 * Operating Temperature: -40 ~~ 85°C 51 51 52 52 (% style="color:#037691" %)**I/O Interface:** ... ... @@ -89,11 +89,10 @@ 89 89 == 1.5 Button & LEDs == 90 90 91 91 92 -[[image: Main.User.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]97 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]] 93 93 94 - 95 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 96 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 99 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 100 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action** 97 97 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 98 98 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 99 99 Meanwhile, BLE module will be active and user can connect via BLE to configure device. ... ... @@ -108,7 +108,7 @@ 108 108 == 1.6 BLE connection == 109 109 110 110 111 -SN50v3-LB supports BLE remote configure. 115 +SN50v3-LB/LS supports BLE remote configure. 112 112 113 113 114 114 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: ... ... @@ -128,18 +128,23 @@ 128 128 129 129 == 1.8 Mechanical == 130 130 135 +=== 1.8.1 for LB version === 131 131 132 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 133 133 134 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 138 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 135 135 140 + 136 136 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 137 137 143 +=== 1.8.2 for LS version === 138 138 145 +[[image:image-20231231203439-3.png||height="385" width="886"]] 146 + 147 + 139 139 == 1.9 Hole Option == 140 140 141 141 142 -SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 151 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 143 143 144 144 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] 145 145 ... ... @@ -146,12 +146,12 @@ 146 146 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]] 147 147 148 148 149 -= 2. Configure SN50v3-LB to connect to LoRaWAN network = 158 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network = 150 150 151 151 == 2.1 How it works == 152 152 153 153 154 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 163 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 155 155 156 156 157 157 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -162,9 +162,9 @@ 162 162 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 163 163 164 164 165 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. 174 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS. 166 166 167 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below: 176 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below: 168 168 169 169 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]] 170 170 ... ... @@ -193,10 +193,10 @@ 193 193 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 194 194 195 195 196 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB 205 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS 197 197 198 198 199 -Press the button for 5 seconds to activate the SN50v3-LB. 208 +Press the button for 5 seconds to activate the SN50v3-LB/LS. 200 200 201 201 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 202 202 ... ... @@ -208,13 +208,13 @@ 208 208 === 2.3.1 Device Status, FPORT~=5 === 209 209 210 210 211 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 220 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server. 212 212 213 213 The Payload format is as below. 214 214 215 215 216 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:510px" %)217 -|(% colspan="6" style="background-color:# d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**225 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 226 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)** 218 218 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 219 219 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 220 220 ... ... @@ -221,7 +221,7 @@ 221 221 Example parse in TTNv3 222 222 223 223 224 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 233 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C 225 225 226 226 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 227 227 ... ... @@ -277,7 +277,7 @@ 277 277 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 278 278 279 279 280 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 289 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes. 281 281 282 282 For example: 283 283 ... ... @@ -286,7 +286,7 @@ 286 286 287 287 (% style="color:red" %) **Important Notice:** 288 288 289 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 298 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload. 290 290 291 291 2. All modes share the same Payload Explanation from HERE. 292 292 ... ... @@ -298,8 +298,8 @@ 298 298 299 299 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 300 300 301 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)302 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**310 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 311 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2** 303 303 |Value|Bat|(% style="width:191px" %)((( 304 304 Temperature(DS18B20)(PC13) 305 305 )))|(% style="width:78px" %)((( ... ... @@ -320,8 +320,8 @@ 320 320 321 321 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 322 322 323 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)324 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**332 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 333 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2** 325 325 |Value|BAT|(% style="width:196px" %)((( 326 326 Temperature(DS18B20)(PC13) 327 327 )))|(% style="width:87px" %)((( ... ... @@ -350,8 +350,8 @@ 350 350 351 351 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 352 352 353 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)354 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**362 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 363 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2** 355 355 |Value|BAT|(% style="width:183px" %)((( 356 356 Temperature(DS18B20)(PC13) 357 357 )))|(% style="width:173px" %)((( ... ... @@ -385,10 +385,10 @@ 385 385 386 386 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 387 387 388 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)389 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((397 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 398 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 390 390 **Size(bytes)** 391 -)))|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1400 +)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1 392 392 |Value|(% style="width:68px" %)((( 393 393 ADC1(PA4) 394 394 )))|(% style="width:75px" %)((( ... ... @@ -411,8 +411,8 @@ 411 411 412 412 This mode has total 11 bytes. As shown below: 413 413 414 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)415 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**423 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 424 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2** 416 416 |Value|BAT|(% style="width:186px" %)((( 417 417 Temperature1(DS18B20)(PC13) 418 418 )))|(% style="width:82px" %)((( ... ... @@ -452,10 +452,10 @@ 452 452 453 453 Check the response of this command and adjust the value to match the real value for thing. 454 454 455 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)456 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((464 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 465 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 457 457 **Size(bytes)** 458 -)))|=(% style="width: 20px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**4**467 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 198px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 49px;background-color:#4F81BD;color:white" %)**4** 459 459 |Value|BAT|(% style="width:193px" %)((( 460 460 Temperature(DS18B20)(PC13) 461 461 )))|(% style="width:85px" %)((( ... ... @@ -479,8 +479,8 @@ 479 479 480 480 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 481 481 482 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)483 -|=(% style="width: 60px;background-color:# D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**4**491 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 492 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 77px;background-color:#4F81BD;color:white" %)**4** 484 484 |Value|BAT|(% style="width:256px" %)((( 485 485 Temperature(DS18B20)(PC13) 486 486 )))|(% style="width:108px" %)((( ... ... @@ -497,10 +497,10 @@ 497 497 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 498 498 499 499 500 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)501 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((509 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 510 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 502 502 **Size(bytes)** 503 -)))|=(% style="width: 20px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2512 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2 504 504 |Value|BAT|(% style="width:188px" %)((( 505 505 Temperature(DS18B20) 506 506 (PC13) ... ... @@ -516,10 +516,10 @@ 516 516 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 517 517 518 518 519 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)520 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((528 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 529 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 521 521 **Size(bytes)** 522 -)))|=(% style="width: 30px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width:70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:70px;background-color:#D9E2F3;color:#0070C0" %)2531 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)2 523 523 |Value|BAT|(% style="width:207px" %)((( 524 524 Temperature(DS18B20) 525 525 (PC13) ... ... @@ -539,10 +539,10 @@ 539 539 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 540 540 541 541 542 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)543 -|=(% style="width: 50px;background-color:# D9E2F3;color:#0070C0" %)(((551 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 552 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 544 544 **Size(bytes)** 545 -)))|=(% style="width: 20px;background-color:# D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width:60px;background-color:#D9E2F3;color:#0070C0" %)4554 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4 546 546 |Value|BAT|((( 547 547 Temperature 548 548 (DS18B20)(PC13) ... ... @@ -579,19 +579,23 @@ 579 579 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 580 580 581 581 582 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 591 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ==== 583 583 593 + 594 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 595 + 584 584 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 585 585 586 -[[It should be noted when using PWM mode.>> http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/#H2.3.3.12A0PWMMOD]]598 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 587 587 588 588 589 589 ===== 2.3.2.10.a Uplink, PWM input capture ===== 590 590 603 + 591 591 [[image:image-20230817172209-2.png||height="439" width="683"]] 592 592 593 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:690px" %)594 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**606 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %) 607 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2** 595 595 |Value|Bat|(% style="width:191px" %)((( 596 596 Temperature(DS18B20)(PC13) 597 597 )))|(% style="width:78px" %)((( ... ... @@ -598,7 +598,6 @@ 598 598 ADC(PA4) 599 599 )))|(% style="width:135px" %)((( 600 600 PWM_Setting 601 - 602 602 &Digital Interrupt(PA8) 603 603 )))|(% style="width:70px" %)((( 604 604 Pulse period ... ... @@ -609,15 +609,57 @@ 609 609 [[image:image-20230817170702-1.png||height="161" width="1044"]] 610 610 611 611 612 - (%style="color:blue"%)**AT+PWMSET=AA(Defaultis0) ==> Corresponding downlink:0BAA**624 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 613 613 614 - When AA is 0, the unit of PWM capturetime is microsecond. The capture frequencyrange is between 20HZ and 100000HZ.626 +**Frequency:** 615 615 616 -When AA is 1, the unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. 628 +(% class="MsoNormal" %) 629 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 617 617 631 +(% class="MsoNormal" %) 632 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 618 618 619 -===== 2.3.2.10.b Downlink, PWM output ===== 620 620 635 +(% class="MsoNormal" %) 636 +**Duty cycle:** 637 + 638 +Duty cycle= Duration of high level/ Pulse period*100 ~(%). 639 + 640 +[[image:image-20230818092200-1.png||height="344" width="627"]] 641 + 642 + 643 +===== 2.3.2.10.b Uplink, PWM output ===== 644 + 645 + 646 +[[image:image-20230817172209-2.png||height="439" width="683"]] 647 + 648 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 649 + 650 +a is the time delay of the output, the unit is ms. 651 + 652 +b is the output frequency, the unit is HZ. 653 + 654 +c is the duty cycle of the output, the unit is %. 655 + 656 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 657 + 658 +aa is the time delay of the output, the unit is ms. 659 + 660 +bb is the output frequency, the unit is HZ. 661 + 662 +cc is the duty cycle of the output, the unit is %. 663 + 664 + 665 +For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 666 + 667 +The oscilloscope displays as follows: 668 + 669 +[[image:image-20231213102404-1.jpeg||height="688" width="821"]] 670 + 671 + 672 +===== 2.3.2.10.c Downlink, PWM output ===== 673 + 674 + 621 621 [[image:image-20230817173800-3.png||height="412" width="685"]] 622 622 623 623 Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** ... ... @@ -633,7 +633,7 @@ 633 633 634 634 The oscilloscope displays as follows: 635 635 636 -[[image:image-20230817173858-5.png||height="6 94" width="921"]]690 +[[image:image-20230817173858-5.png||height="634" width="843"]] 637 637 638 638 639 639 === 2.3.3 Decode payload === ... ... @@ -645,13 +645,13 @@ 645 645 646 646 The payload decoder function for TTN V3 are here: 647 647 648 -SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 702 +SN50v3-LB/LS TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 649 649 650 650 651 651 ==== 2.3.3.1 Battery Info ==== 652 652 653 653 654 -Check the battery voltage for SN50v3-LB. 708 +Check the battery voltage for SN50v3-LB/LS. 655 655 656 656 Ex1: 0x0B45 = 2885mV 657 657 ... ... @@ -713,10 +713,12 @@ 713 713 714 714 [[image:image-20230811113449-1.png||height="370" width="608"]] 715 715 770 + 771 + 716 716 ==== 2.3.3.5 Digital Interrupt ==== 717 717 718 718 719 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 775 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server. 720 720 721 721 (% style="color:blue" %)** Interrupt connection method:** 722 722 ... ... @@ -729,18 +729,18 @@ 729 729 730 730 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 731 731 732 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 788 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window. 733 733 734 734 735 735 (% style="color:blue" %)**Below is the installation example:** 736 736 737 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 793 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows: 738 738 739 739 * ((( 740 -One pin to SN50v3-LB's PA8 pin 796 +One pin to SN50v3-LB/LS's PA8 pin 741 741 ))) 742 742 * ((( 743 -The other pin to SN50v3-LB's VDD pin 799 +The other pin to SN50v3-LB/LS's VDD pin 744 744 ))) 745 745 746 746 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -776,7 +776,7 @@ 776 776 777 777 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 778 778 779 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 835 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.** 780 780 781 781 782 782 Below is the connection to SHT20/ SHT31. The connection is as below: ... ... @@ -810,7 +810,7 @@ 810 810 811 811 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 812 812 813 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 869 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 814 814 815 815 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 816 816 ... ... @@ -819,7 +819,7 @@ 819 819 [[image:image-20230512173903-6.png||height="596" width="715"]] 820 820 821 821 822 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 878 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 823 823 824 824 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 825 825 ... ... @@ -831,13 +831,13 @@ 831 831 ==== 2.3.3.9 Battery Output - BAT pin ==== 832 832 833 833 834 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 890 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon. 835 835 836 836 837 837 ==== 2.3.3.10 +5V Output ==== 838 838 839 839 840 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 896 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 841 841 842 842 The 5V output time can be controlled by AT Command. 843 843 ... ... @@ -875,10 +875,18 @@ 875 875 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 876 876 ))) 877 877 * ((( 878 -Since the device can only detect a pulse period of 50ms when AT+PWMSET=0 (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 934 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 879 879 ))) 936 +* ((( 937 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 880 880 939 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 881 881 941 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used. 942 + 943 +b) If the output duration is more than 30 seconds, better to use external power source. 944 +))) 945 + 882 882 ==== 2.3.3.13 Working MOD ==== 883 883 884 884 ... ... @@ -912,17 +912,17 @@ 912 912 == 2.5 Frequency Plans == 913 913 914 914 915 -The SN50v3-LB uses OTAA mode and below frequency plans by default. Ifuserwanttouseit withdifferent frequencyplan, pleaserefer theATcommandsets.979 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country. 916 916 917 917 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 918 918 919 919 920 -= 3. Configure SN50v3-LB = 984 += 3. Configure SN50v3-LB/LS = 921 921 922 922 == 3.1 Configure Methods == 923 923 924 924 925 -SN50v3-LB supports below configure method: 989 +SN50v3-LB/LS supports below configure method: 926 926 927 927 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 928 928 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. ... ... @@ -941,10 +941,10 @@ 941 941 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 942 942 943 943 944 -== 3.3 Commands special design for SN50v3-LB == 1008 +== 3.3 Commands special design for SN50v3-LB/LS == 945 945 946 946 947 -These commands only valid for SN50v3-LB, as below: 1011 +These commands only valid for SN50v3-LB/LS, as below: 948 948 949 949 950 950 === 3.3.1 Set Transmit Interval Time === ... ... @@ -955,7 +955,7 @@ 955 955 (% style="color:blue" %)**AT Command: AT+TDC** 956 956 957 957 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 958 -|=(% style="width: 156px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**1022 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response** 959 959 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 960 960 30000 961 961 OK ... ... @@ -990,10 +990,10 @@ 990 990 991 991 Feature, Set Interrupt mode for GPIO_EXIT. 992 992 993 -(% style="color:blue" %)**AT Command: AT+INTMOD1 ,AT+INTMOD2,AT+INTMOD3**1057 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 994 994 995 995 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 996 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1060 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 997 997 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 998 998 0 999 999 OK ... ... @@ -1037,7 +1037,7 @@ 1037 1037 (% style="color:blue" %)**AT Command: AT+5VT** 1038 1038 1039 1039 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1040 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1104 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1041 1041 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1042 1042 500(default) 1043 1043 OK ... ... @@ -1063,9 +1063,9 @@ 1063 1063 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1064 1064 1065 1065 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1066 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1130 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1067 1067 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1068 -|(% style="width:154px" %)AT+WEIGAP= ?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)1132 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1069 1069 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 1070 1070 1071 1071 (% style="color:blue" %)**Downlink Command: 0x08** ... ... @@ -1089,8 +1089,8 @@ 1089 1089 1090 1090 (% style="color:blue" %)**AT Command: AT+SETCNT** 1091 1091 1092 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:510px" %)1093 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1156 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1157 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1094 1094 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1095 1095 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1096 1096 ... ... @@ -1110,8 +1110,8 @@ 1110 1110 1111 1111 (% style="color:blue" %)**AT Command: AT+MOD** 1112 1112 1113 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:510px" %)1114 -|=(% style="width: 155px;background-color:# D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**1177 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1178 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1115 1115 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1116 1116 OK 1117 1117 ))) ... ... @@ -1127,11 +1127,97 @@ 1127 1127 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1128 1128 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1129 1129 1130 -= 4.Battery &PowerConsumption =1194 +=== 3.3.8 PWM setting === 1131 1131 1132 1132 1133 - SN50v3-LB useER26500 + SPC1520 batterypack.Seebelowlink for detailinformationaboutthe batteryinfoand howtoreplace.1197 +Feature: Set the time acquisition unit for PWM input capture. 1134 1134 1199 +(% style="color:blue" %)**AT Command: AT+PWMSET** 1200 + 1201 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1202 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response** 1203 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1204 +0(default) 1205 +OK 1206 +))) 1207 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1208 +OK 1209 + 1210 +))) 1211 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1212 + 1213 +(% style="color:blue" %)**Downlink Command: 0x0C** 1214 + 1215 +Format: Command Code (0x0C) followed by 1 bytes. 1216 + 1217 +* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1218 +* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1219 + 1220 +**Feature: Set PWM output time, output frequency and output duty cycle.** 1221 + 1222 +(% style="color:blue" %)**AT Command: AT+PWMOUT** 1223 + 1224 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1225 +|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response** 1226 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1227 +0,0,0(default) 1228 +OK 1229 +))) 1230 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1231 +OK 1232 + 1233 +))) 1234 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1235 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1236 + 1237 + 1238 +)))|(% style="width:137px" %)((( 1239 +OK 1240 +))) 1241 + 1242 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1243 +|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters** 1244 +|(% colspan="1" rowspan="3" style="width:155px" %)((( 1245 +AT+PWMOUT=a,b,c 1246 + 1247 + 1248 +)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1249 +Set PWM output time, output frequency and output duty cycle. 1250 + 1251 +((( 1252 + 1253 +))) 1254 + 1255 +((( 1256 + 1257 +))) 1258 +)))|(% style="width:242px" %)((( 1259 +a: Output time (unit: seconds) 1260 +The value ranges from 0 to 65535. 1261 +When a=65535, PWM will always output. 1262 +))) 1263 +|(% style="width:242px" %)((( 1264 +b: Output frequency (unit: HZ) 1265 +))) 1266 +|(% style="width:242px" %)((( 1267 +c: Output duty cycle (unit: %) 1268 +The value ranges from 0 to 100. 1269 +))) 1270 + 1271 +(% style="color:blue" %)**Downlink Command: 0x0B01** 1272 + 1273 +Format: Command Code (0x0B01) followed by 6 bytes. 1274 + 1275 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1276 + 1277 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1278 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1279 + 1280 += 4. Battery & Power Cons = 1281 + 1282 + 1283 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace. 1284 + 1135 1135 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 1136 1136 1137 1137 ... ... @@ -1139,7 +1139,7 @@ 1139 1139 1140 1140 1141 1141 (% class="wikigeneratedid" %) 1142 -**User can change firmware SN50v3-LB to:** 1292 +**User can change firmware SN50v3-LB/LS to:** 1143 1143 1144 1144 * Change Frequency band/ region. 1145 1145 * Update with new features. ... ... @@ -1154,22 +1154,22 @@ 1154 1154 1155 1155 = 6. FAQ = 1156 1156 1157 -== 6.1 Where can i find source code of SN50v3-LB? == 1307 +== 6.1 Where can i find source code of SN50v3-LB/LS? == 1158 1158 1159 1159 1160 1160 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1161 1161 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1162 1162 1163 -== 6.2 How to generate PWM Output in SN50v3-LB? == 1313 +== 6.2 How to generate PWM Output in SN50v3-LB/LS? == 1164 1164 1165 1165 1166 1166 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1167 1167 1168 1168 1169 -== 6.3 How to put several sensors to a SN50v3-LB? == 1319 +== 6.3 How to put several sensors to a SN50v3-LB/LS? == 1170 1170 1171 1171 1172 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1322 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1173 1173 1174 1174 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1175 1175 ... ... @@ -1179,7 +1179,7 @@ 1179 1179 = 7. Order Info = 1180 1180 1181 1181 1182 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** 1332 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY** 1183 1183 1184 1184 (% style="color:red" %)**XX**(%%): The default frequency band 1185 1185 ... ... @@ -1204,7 +1204,7 @@ 1204 1204 1205 1205 (% style="color:#037691" %)**Package Includes**: 1206 1206 1207 -* SN50v3-LB LoRaWAN Generic Node 1357 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node 1208 1208 1209 1209 (% style="color:#037691" %)**Dimension and weight**: 1210 1210
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.9 KB - Content
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +35.4 KB - Content
- image-20231231203439-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.6 KB - Content
- image-20240103095513-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +577.4 KB - Content
- image-20240103095714-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +230.1 KB - Content