<
From version < 69.1 >
edited by Saxer Lin
on 2023/08/17 18:33
To version < 80.1 >
edited by Edwin Chen
on 2023/12/31 20:30
>
Change comment: Uploaded new attachment "image-20231231202945-1.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Saxer
1 +XWiki.Edwin
Content
... ... @@ -3,7 +3,7 @@
3 3  
4 4  
5 5  
6 -**Table of Contents**
6 +**Table of Contents:**
7 7  
8 8  {{toc/}}
9 9  
... ... @@ -19,7 +19,7 @@
19 19  
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
... ... @@ -27,7 +27,6 @@
27 27  
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 -
31 31  == 1.2 ​Features ==
32 32  
33 33  
... ... @@ -581,17 +581,20 @@
581 581  
582 582  ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
583 583  
583 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
584 +
584 584  In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
585 585  
586 -[[It should be noted when using PWM mode.>>http://8.211.40.43/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SN50v3-LB/#H2.3.3.12A0PWMMOD]]
587 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
587 587  
588 588  
589 589  ===== 2.3.2.10.a  Uplink, PWM input capture =====
590 590  
592 +
591 591  [[image:image-20230817172209-2.png||height="439" width="683"]]
592 592  
593 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
594 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
595 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
596 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
595 595  |Value|Bat|(% style="width:191px" %)(((
596 596  Temperature(DS18B20)(PC13)
597 597  )))|(% style="width:78px" %)(((
... ... @@ -598,7 +598,6 @@
598 598  ADC(PA4)
599 599  )))|(% style="width:135px" %)(((
600 600  PWM_Setting
601 -
602 602  &Digital Interrupt(PA8)
603 603  )))|(% style="width:70px" %)(((
604 604  Pulse period
... ... @@ -609,15 +609,55 @@
609 609  [[image:image-20230817170702-1.png||height="161" width="1044"]]
610 610  
611 611  
612 -(% style="color:blue" %)**AT+PWMSET=AA(Default is 0)  ==> Corresponding downlink: 0B AA**
613 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
613 613  
614 -When AA is 0, the unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.  
615 +**Frequency:**
615 615  
616 -When AA is 1, the unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ.  
617 +(% class="MsoNormal" %)
618 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
617 617  
620 +(% class="MsoNormal" %)
621 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
618 618  
619 -===== 2.3.2.10.b  Downlink, PWM output =====
620 620  
624 +(% class="MsoNormal" %)
625 +**Duty cycle:**
626 +
627 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
628 +
629 +[[image:image-20230818092200-1.png||height="344" width="627"]]
630 +
631 +===== 2.3.2.10.b  Uplink, PWM output =====
632 +
633 +[[image:image-20230817172209-2.png||height="439" width="683"]]
634 +
635 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
636 +
637 +a is the time delay of the output, the unit is ms.
638 +
639 +b is the output frequency, the unit is HZ.
640 +
641 +c is the duty cycle of the output, the unit is %.
642 +
643 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
644 +
645 +aa is the time delay of the output, the unit is ms.
646 +
647 +bb is the output frequency, the unit is HZ.
648 +
649 +cc is the duty cycle of the output, the unit is %.
650 +
651 +
652 +For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
653 +
654 +The oscilloscope displays as follows:
655 +
656 +[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
657 +
658 +
659 +===== 2.3.2.10.c  Downlink, PWM output =====
660 +
661 +
621 621  [[image:image-20230817173800-3.png||height="412" width="685"]]
622 622  
623 623  Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
... ... @@ -875,10 +875,21 @@
875 875  The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
876 876  )))
877 877  * (((
878 -Since the device can only detect a pulse period of 50ms when AT+PWMSET=0 (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
919 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
879 879  )))
921 +* (((
922 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
880 880  
924 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
881 881  
926 +a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
927 +
928 +b) If the output duration is more than 30 seconds, better to use external power source. 
929 +
930 +
931 +
932 +)))
933 +
882 882  ==== 2.3.3.13  Working MOD ====
883 883  
884 884  
... ... @@ -1127,9 +1127,101 @@
1127 1127  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1128 1128  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1129 1129  
1130 -= 4. Battery & Power Consumption =
1182 +(% id="H3.3.8PWMsetting" %)
1183 +=== 3.3.8 PWM setting ===
1131 1131  
1132 1132  
1186 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1187 +
1188 +(% style="color:blue" %)**AT Command: AT+PWMSET**
1189 +
1190 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1191 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1192 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1193 +0(default)
1194 +
1195 +OK
1196 +)))
1197 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1198 +OK
1199 +
1200 +)))
1201 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1202 +
1203 +(% style="color:blue" %)**Downlink Command: 0x0C**
1204 +
1205 +Format: Command Code (0x0C) followed by 1 bytes.
1206 +
1207 +* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1208 +* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1209 +
1210 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1211 +
1212 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1213 +
1214 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1215 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1216 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1217 +0,0,0(default)
1218 +
1219 +OK
1220 +)))
1221 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1222 +OK
1223 +
1224 +)))
1225 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1226 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1227 +
1228 +
1229 +)))|(% style="width:137px" %)(((
1230 +OK
1231 +)))
1232 +
1233 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1234 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1235 +|(% colspan="1" rowspan="3" style="width:155px" %)(((
1236 +AT+PWMOUT=a,b,c
1237 +
1238 +
1239 +)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1240 +Set PWM output time, output frequency and output duty cycle.
1241 +
1242 +(((
1243 +
1244 +)))
1245 +
1246 +(((
1247 +
1248 +)))
1249 +)))|(% style="width:242px" %)(((
1250 +a: Output time (unit: seconds)
1251 +
1252 +The value ranges from 0 to 65535.
1253 +
1254 +When a=65535, PWM will always output.
1255 +)))
1256 +|(% style="width:242px" %)(((
1257 +b: Output frequency (unit: HZ)
1258 +)))
1259 +|(% style="width:242px" %)(((
1260 +c: Output duty cycle (unit: %)
1261 +
1262 +The value ranges from 0 to 100.
1263 +)))
1264 +
1265 +(% style="color:blue" %)**Downlink Command: 0x0B01**
1266 +
1267 +Format: Command Code (0x0B01) followed by 6 bytes.
1268 +
1269 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1270 +
1271 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1272 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1273 +
1274 += 4. Battery & Power Cons =
1275 +
1276 +
1133 1133  SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1134 1134  
1135 1135  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
image-20230818092200-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0