<
From version < 68.1 >
edited by Saxer Lin
on 2023/08/17 18:32
To version < 76.1 >
edited by Mengting Qiu
on 2023/12/12 19:04
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Saxer
1 +XWiki.ting
Content
... ... @@ -19,7 +19,7 @@
19 19  
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
... ... @@ -27,7 +27,6 @@
27 27  
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 -
31 31  == 1.2 ​Features ==
32 32  
33 33  
... ... @@ -41,7 +41,6 @@
41 41  * Downlink to change configure
42 42  * 8500mAh Battery for long term use
43 43  
44 -
45 45  == 1.3 Specification ==
46 46  
47 47  
... ... @@ -79,7 +79,6 @@
79 79  * Sleep Mode: 5uA @ 3.3v
80 80  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
81 81  
82 -
83 83  == 1.4 Sleep mode and working mode ==
84 84  
85 85  
... ... @@ -107,7 +107,6 @@
107 107  )))
108 108  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
109 109  
110 -
111 111  == 1.6 BLE connection ==
112 112  
113 113  
... ... @@ -584,11 +584,16 @@
584 584  
585 585  ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
586 586  
583 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
584 +
587 587  In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
588 588  
587 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
589 589  
589 +
590 590  ===== 2.3.2.10.a  Uplink, PWM input capture =====
591 591  
592 +
592 592  [[image:image-20230817172209-2.png||height="439" width="683"]]
593 593  
594 594  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
... ... @@ -610,15 +610,35 @@
610 610  [[image:image-20230817170702-1.png||height="161" width="1044"]]
611 611  
612 612  
613 -(% style="color:blue" %)**AT+PWMSET=AA(Default is 0)  ==> Corresponding downlink: 0B AA**
614 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
614 614  
615 -When AA is 0, the unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. 
616 +**Frequency:**
616 616  
617 -When AA is 1, the unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. 
618 +(% class="MsoNormal" %)
619 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
618 618  
621 +(% class="MsoNormal" %)
622 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
619 619  
620 -===== 2.3.2.10.b  Downlink, PWM output =====
621 621  
625 +(% class="MsoNormal" %)
626 +**Duty cycle:**
627 +
628 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
629 +
630 +[[image:image-20230818092200-1.png||height="344" width="627"]]
631 +
632 +===== 2.3.2.10.b  Uplink, PWM input capture =====
633 +
634 +
635 +
636 +
637 +
638 +
639 +
640 +===== 2.3.2.10.c  Downlink, PWM output =====
641 +
642 +
622 622  [[image:image-20230817173800-3.png||height="412" width="685"]]
623 623  
624 624  Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
... ... @@ -863,6 +863,34 @@
863 863  ==== 2.3.3.12  PWM MOD ====
864 864  
865 865  
887 +* (((
888 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
889 +)))
890 +* (((
891 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
892 +)))
893 +
894 + [[image:image-20230817183249-3.png||height="320" width="417"]]
895 +
896 +* (((
897 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
898 +)))
899 +* (((
900 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
901 +)))
902 +* (((
903 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
904 +
905 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
906 +
907 +a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
908 +
909 +b) If the output duration is more than 30 seconds, better to use external power source. 
910 +
911 +
912 +
913 +)))
914 +
866 866  ==== 2.3.3.13  Working MOD ====
867 867  
868 868  
... ... @@ -883,7 +883,6 @@
883 883  * 8: MOD9
884 884  * 9: MOD10
885 885  
886 -
887 887  == 2.4 Payload Decoder file ==
888 888  
889 889  
... ... @@ -913,7 +913,6 @@
913 913  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
914 914  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
915 915  
916 -
917 917  == 3.2 General Commands ==
918 918  
919 919  
... ... @@ -961,7 +961,6 @@
961 961  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
962 962  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
963 963  
964 -
965 965  === 3.3.2 Get Device Status ===
966 966  
967 967  
... ... @@ -1010,7 +1010,6 @@
1010 1010  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1011 1011  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1012 1012  
1013 -
1014 1014  === 3.3.4 Set Power Output Duration ===
1015 1015  
1016 1016  
... ... @@ -1043,7 +1043,6 @@
1043 1043  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1044 1044  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1045 1045  
1046 -
1047 1047  === 3.3.5 Set Weighing parameters ===
1048 1048  
1049 1049  
... ... @@ -1069,7 +1069,6 @@
1069 1069  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1070 1070  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1071 1071  
1072 -
1073 1073  === 3.3.6 Set Digital pulse count value ===
1074 1074  
1075 1075  
... ... @@ -1093,7 +1093,6 @@
1093 1093  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1094 1094  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1095 1095  
1096 -
1097 1097  === 3.3.7 Set Workmode ===
1098 1098  
1099 1099  
... ... @@ -1118,7 +1118,70 @@
1118 1118  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1119 1119  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1120 1120  
1163 +=== 3.3.8 PWM setting ===
1121 1121  
1165 +
1166 +* Feature: Set the time acquisition unit for PWM input capture.
1167 +
1168 +(% style="color:blue" %)**AT Command: AT+PWMSET**
1169 +
1170 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1171 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1172 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1173 +0(default)
1174 +
1175 +OK
1176 +)))
1177 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:157px" %)(((
1178 +OK
1179 +
1180 +)))
1181 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK
1182 +
1183 +(% style="color:blue" %)**Downlink Command: 0x0C**
1184 +
1185 +Format: Command Code (0x0C) followed by 1 bytes.
1186 +
1187 +* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1188 +* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1189 +
1190 +* Feature: Set the time acquisition unit for PWM input capture.
1191 +
1192 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1193 +
1194 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:580px" %)
1195 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1196 +|(% style="width:154px" %)AT+PWMOUT=?|(% style="width:196px" %)0|(% style="width:157px" %)(((
1197 +0,0,0(default)
1198 +
1199 +OK
1200 +)))
1201 +|(% style="width:154px" %)AT+PWMOUT=0,0,0|(% style="width:196px" %)The default is PWM input detection|(% style="width:157px" %)(((
1202 +OK
1203 +
1204 +)))
1205 +|(% style="width:154px" %)AT+PWMOUT=a,b,c|(% style="width:250px" %)(((
1206 +PWM output.
1207 +
1208 +a: Output time (unit: seconds)
1209 +
1210 +b: Output frequency (unit: HZ)
1211 +
1212 +c: Output duty cycle (unit: %)
1213 +)))|(% style="width:157px" %)(((
1214 +OK
1215 +)))
1216 +
1217 +
1218 +(% style="color:blue" %)**Downlink Command: 0x0C**
1219 +
1220 +
1221 +Format: Command Code (0x0C) followed by 1 bytes.
1222 +
1223 +* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1224 +* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1225 +
1226 +
1122 1122  = 4. Battery & Power Consumption =
1123 1123  
1124 1124  
... ... @@ -1144,7 +1144,6 @@
1144 1144  * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1145 1145  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1146 1146  
1147 -
1148 1148  = 6. FAQ =
1149 1149  
1150 1150  == 6.1 Where can i find source code of SN50v3-LB? ==
... ... @@ -1153,7 +1153,6 @@
1153 1153  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1154 1154  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1155 1155  
1156 -
1157 1157  == 6.2 How to generate PWM Output in SN50v3-LB? ==
1158 1158  
1159 1159  
... ... @@ -1193,7 +1193,6 @@
1193 1193  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1194 1194  * (% style="color:red" %)**NH**(%%): No Hole
1195 1195  
1196 -
1197 1197  = 8. ​Packing Info =
1198 1198  
1199 1199  
... ... @@ -1208,7 +1208,6 @@
1208 1208  * Package Size / pcs : cm
1209 1209  * Weight / pcs : g
1210 1210  
1211 -
1212 1212  = 9. Support =
1213 1213  
1214 1214  
image-20230818092200-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +98.9 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0