<
From version < 67.1 >
edited by Saxer Lin
on 2023/08/17 18:32
To version < 87.19 >
edited by Xiaoling
on 2024/01/03 14:17
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Saxer
1 +XWiki.Xiaoling
Content
... ... @@ -1,10 +1,15 @@
1 +
2 +
1 1  (% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
4 +[[image:image-20240103095714-2.png]]
3 3  
4 4  
5 5  
6 -**Table of Contents:**
7 7  
9 +
10 +
11 +**Table of Contents:**
12 +
8 8  {{toc/}}
9 9  
10 10  
... ... @@ -14,20 +14,19 @@
14 14  
15 15  = 1. Introduction =
16 16  
17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
18 18  
19 19  
20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
24 -(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
25 25  
26 -(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
27 27  
28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 -
31 31  == 1.2 ​Features ==
32 32  
33 33  
... ... @@ -39,15 +39,15 @@
39 39  * Support wireless OTA update firmware
40 40  * Uplink on periodically
41 41  * Downlink to change configure
42 -* 8500mAh Battery for long term use
46 +* 8500mAh Li/SOCl2 battery (SN50v3-LB)
47 +* Solar panel + 3000mAh Li-on battery (SN50v3-LS)
43 43  
44 -
45 45  == 1.3 Specification ==
46 46  
47 47  
48 48  (% style="color:#037691" %)**Common DC Characteristics:**
49 49  
50 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
54 +* Supply Voltage: Built- in battery , 2.5v ~~ 3.6v
51 51  * Operating Temperature: -40 ~~ 85°C
52 52  
53 53  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -79,7 +79,6 @@
79 79  * Sleep Mode: 5uA @ 3.3v
80 80  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
81 81  
82 -
83 83  == 1.4 Sleep mode and working mode ==
84 84  
85 85  
... ... @@ -91,11 +91,11 @@
91 91  == 1.5 Button & LEDs ==
92 92  
93 93  
94 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
97 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
95 95  
96 96  
97 97  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
98 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
101 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
99 99  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
100 100  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
101 101  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -107,11 +107,10 @@
107 107  )))
108 108  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
109 109  
110 -
111 111  == 1.6 BLE connection ==
112 112  
113 113  
114 -SN50v3-LB supports BLE remote configure.
116 +SN50v3-LB/LS supports BLE remote configure.
115 115  
116 116  
117 117  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -131,18 +131,23 @@
131 131  
132 132  == 1.8 Mechanical ==
133 133  
136 +=== 1.8.1 for LB version ===
134 134  
135 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
136 136  
137 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
139 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
138 138  
141 +
139 139  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
140 140  
144 +=== 1.8.2 for LS version ===
141 141  
146 +[[image:image-20231231203439-3.png||height="385" width="886"]]
147 +
148 +
142 142  == 1.9 Hole Option ==
143 143  
144 144  
145 -SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
152 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
146 146  
147 147  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
148 148  
... ... @@ -149,12 +149,12 @@
149 149  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
150 150  
151 151  
152 -= 2. Configure SN50v3-LB to connect to LoRaWAN network =
159 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
153 153  
154 154  == 2.1 How it works ==
155 155  
156 156  
157 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
164 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
158 158  
159 159  
160 160  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -165,9 +165,9 @@
165 165  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
166 166  
167 167  
168 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
175 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
169 169  
170 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
177 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
171 171  
172 172  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
173 173  
... ... @@ -196,10 +196,10 @@
196 196  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
197 197  
198 198  
199 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
206 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
200 200  
201 201  
202 -Press the button for 5 seconds to activate the SN50v3-LB.
209 +Press the button for 5 seconds to activate the SN50v3-LB/LS.
203 203  
204 204  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
205 205  
... ... @@ -211,13 +211,13 @@
211 211  === 2.3.1 Device Status, FPORT~=5 ===
212 212  
213 213  
214 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
221 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
215 215  
216 216  The Payload format is as below.
217 217  
218 218  
219 219  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
220 -|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
227 +|(% colspan="6" style="background-color:#4F81BD;color:white" %)**Device Status (FPORT=5)**
221 221  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
222 222  |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
223 223  
... ... @@ -224,7 +224,7 @@
224 224  Example parse in TTNv3
225 225  
226 226  
227 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
234 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
228 228  
229 229  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
230 230  
... ... @@ -280,7 +280,7 @@
280 280  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
281 281  
282 282  
283 -SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
290 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
284 284  
285 285  For example:
286 286  
... ... @@ -289,7 +289,7 @@
289 289  
290 290  (% style="color:red" %) **Important Notice:**
291 291  
292 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
299 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
293 293  
294 294  2. All modes share the same Payload Explanation from HERE.
295 295  
... ... @@ -302,7 +302,7 @@
302 302  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
303 303  
304 304  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
305 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
312 +|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:90px" %)**1**|(% style="background-color:#4F81BD;color:white; width:130px" %)**2**|(% style="background-color:#4F81BD;color:white; width:80px" %)**2**
306 306  |Value|Bat|(% style="width:191px" %)(((
307 307  Temperature(DS18B20)(PC13)
308 308  )))|(% style="width:78px" %)(((
... ... @@ -324,7 +324,7 @@
324 324  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
325 325  
326 326  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
327 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
334 +|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:30px" %)**2**|(% style="background-color:#4F81BD;color:white; width:110px" %)**2**|(% style="background-color:#4F81BD;color:white; width:40px" %)**2**|(% style="background-color:#4F81BD;color:white; width:110px" %)**1**|(% style="background-color:#4F81BD;color:white; width:140px" %)**2**|(% style="background-color:#4F81BD;color:white; width:40px" %)**2**
328 328  |Value|BAT|(% style="width:196px" %)(((
329 329  Temperature(DS18B20)(PC13)
330 330  )))|(% style="width:87px" %)(((
... ... @@ -354,7 +354,7 @@
354 354  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
355 355  
356 356  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
357 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
364 +|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**1**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:120px" %)**2**|(% style="background-color:#4F81BD;color:white; width:80px" %)**2**
358 358  |Value|BAT|(% style="width:183px" %)(((
359 359  Temperature(DS18B20)(PC13)
360 360  )))|(% style="width:173px" %)(((
... ... @@ -389,9 +389,9 @@
389 389  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
390 390  
391 391  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
392 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
399 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
393 393  **Size(bytes)**
394 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
401 +)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 100px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
395 395  |Value|(% style="width:68px" %)(((
396 396  ADC1(PA4)
397 397  )))|(% style="width:75px" %)(((
... ... @@ -415,7 +415,7 @@
415 415  This mode has total 11 bytes. As shown below:
416 416  
417 417  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
418 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
425 +|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**1**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**
419 419  |Value|BAT|(% style="width:186px" %)(((
420 420  Temperature1(DS18B20)(PC13)
421 421  )))|(% style="width:82px" %)(((
... ... @@ -456,9 +456,9 @@
456 456  Check the response of this command and adjust the value to match the real value for thing.
457 457  
458 458  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
459 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
466 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
460 460  **Size(bytes)**
461 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
468 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4**
462 462  |Value|BAT|(% style="width:193px" %)(((
463 463  Temperature(DS18B20)(PC13)
464 464  )))|(% style="width:85px" %)(((
... ... @@ -483,7 +483,7 @@
483 483  (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
484 484  
485 485  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
486 -|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
493 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**4**
487 487  |Value|BAT|(% style="width:256px" %)(((
488 488  Temperature(DS18B20)(PC13)
489 489  )))|(% style="width:108px" %)(((
... ... @@ -501,9 +501,9 @@
501 501  
502 502  
503 503  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
504 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
511 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
505 505  **Size(bytes)**
506 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
513 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
507 507  |Value|BAT|(% style="width:188px" %)(((
508 508  Temperature(DS18B20)
509 509  (PC13)
... ... @@ -520,9 +520,9 @@
520 520  
521 521  
522 522  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
523 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
530 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
524 524  **Size(bytes)**
525 -)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
532 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 120px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)2
526 526  |Value|BAT|(% style="width:207px" %)(((
527 527  Temperature(DS18B20)
528 528  (PC13)
... ... @@ -543,9 +543,9 @@
543 543  
544 544  
545 545  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
546 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
553 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
547 547  **Size(bytes)**
548 -)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
555 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4
549 549  |Value|BAT|(((
550 550  Temperature
551 551  (DS18B20)(PC13)
... ... @@ -582,17 +582,23 @@
582 582  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
583 583  
584 584  
585 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
592 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
586 586  
594 +
595 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
596 +
587 587  In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
588 588  
599 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
589 589  
601 +
590 590  ===== 2.3.2.10.a  Uplink, PWM input capture =====
591 591  
604 +
592 592  [[image:image-20230817172209-2.png||height="439" width="683"]]
593 593  
594 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
595 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
607 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
608 +|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#4F81BD;color:white; width:50px" %)**2**|(% style="background-color:#4F81BD;color:white; width:135px" %)**1**|(% style="background-color:#4F81BD;color:white; width:70px" %)**2**|(% style="background-color:#4F81BD;color:white; width:90px" %)**2**
596 596  |Value|Bat|(% style="width:191px" %)(((
597 597  Temperature(DS18B20)(PC13)
598 598  )))|(% style="width:78px" %)(((
... ... @@ -599,7 +599,6 @@
599 599  ADC(PA4)
600 600  )))|(% style="width:135px" %)(((
601 601  PWM_Setting
602 -
603 603  &Digital Interrupt(PA8)
604 604  )))|(% style="width:70px" %)(((
605 605  Pulse period
... ... @@ -610,15 +610,57 @@
610 610  [[image:image-20230817170702-1.png||height="161" width="1044"]]
611 611  
612 612  
613 -(% style="color:blue" %)**AT+PWMSET=AA(Default is 0)  ==> Corresponding downlink: 0B AA**
625 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
614 614  
615 -When AA is 0, the unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. 
627 +**Frequency:**
616 616  
617 -When AA is 1, the unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. 
629 +(% class="MsoNormal" %)
630 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
618 618  
632 +(% class="MsoNormal" %)
633 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
619 619  
620 -===== 2.3.2.10.b  Downlink, PWM output =====
621 621  
636 +(% class="MsoNormal" %)
637 +**Duty cycle:**
638 +
639 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
640 +
641 +[[image:image-20230818092200-1.png||height="344" width="627"]]
642 +
643 +
644 +===== 2.3.2.10.b  Uplink, PWM output =====
645 +
646 +
647 +[[image:image-20230817172209-2.png||height="439" width="683"]]
648 +
649 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
650 +
651 +a is the time delay of the output, the unit is ms.
652 +
653 +b is the output frequency, the unit is HZ.
654 +
655 +c is the duty cycle of the output, the unit is %.
656 +
657 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
658 +
659 +aa is the time delay of the output, the unit is ms.
660 +
661 +bb is the output frequency, the unit is HZ.
662 +
663 +cc is the duty cycle of the output, the unit is %.
664 +
665 +
666 +For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
667 +
668 +The oscilloscope displays as follows:
669 +
670 +[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
671 +
672 +
673 +===== 2.3.2.10.c  Downlink, PWM output =====
674 +
675 +
622 622  [[image:image-20230817173800-3.png||height="412" width="685"]]
623 623  
624 624  Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
... ... @@ -634,7 +634,7 @@
634 634  
635 635  The oscilloscope displays as follows:
636 636  
637 -[[image:image-20230817173858-5.png||height="694" width="921"]]
691 +[[image:image-20230817173858-5.png||height="634" width="843"]]
638 638  
639 639  
640 640  === 2.3.3  ​Decode payload ===
... ... @@ -646,13 +646,13 @@
646 646  
647 647  The payload decoder function for TTN V3 are here:
648 648  
649 -SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
703 +SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
650 650  
651 651  
652 652  ==== 2.3.3.1 Battery Info ====
653 653  
654 654  
655 -Check the battery voltage for SN50v3-LB.
709 +Check the battery voltage for SN50v3-LB/LS.
656 656  
657 657  Ex1: 0x0B45 = 2885mV
658 658  
... ... @@ -714,10 +714,12 @@
714 714  
715 715  [[image:image-20230811113449-1.png||height="370" width="608"]]
716 716  
771 +
772 +
717 717  ==== 2.3.3.5 Digital Interrupt ====
718 718  
719 719  
720 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
776 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
721 721  
722 722  (% style="color:blue" %)** Interrupt connection method:**
723 723  
... ... @@ -730,18 +730,18 @@
730 730  
731 731  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
732 732  
733 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
789 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
734 734  
735 735  
736 736  (% style="color:blue" %)**Below is the installation example:**
737 737  
738 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
794 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
739 739  
740 740  * (((
741 -One pin to SN50v3-LB's PA8 pin
797 +One pin to SN50v3-LB/LS's PA8 pin
742 742  )))
743 743  * (((
744 -The other pin to SN50v3-LB's VDD pin
800 +The other pin to SN50v3-LB/LS's VDD pin
745 745  )))
746 746  
747 747  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -777,7 +777,7 @@
777 777  
778 778  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
779 779  
780 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
836 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
781 781  
782 782  
783 783  Below is the connection to SHT20/ SHT31. The connection is as below:
... ... @@ -811,7 +811,7 @@
811 811  
812 812  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
813 813  
814 -The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
870 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
815 815  
816 816  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
817 817  
... ... @@ -820,7 +820,7 @@
820 820  [[image:image-20230512173903-6.png||height="596" width="715"]]
821 821  
822 822  
823 -Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
879 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
824 824  
825 825  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
826 826  
... ... @@ -832,13 +832,13 @@
832 832  ==== 2.3.3.9  Battery Output - BAT pin ====
833 833  
834 834  
835 -The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
891 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
836 836  
837 837  
838 838  ==== 2.3.3.10  +5V Output ====
839 839  
840 840  
841 -SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
897 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
842 842  
843 843  The 5V output time can be controlled by AT Command.
844 844  
... ... @@ -863,6 +863,32 @@
863 863  ==== 2.3.3.12  PWM MOD ====
864 864  
865 865  
922 +* (((
923 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
924 +)))
925 +* (((
926 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
927 +)))
928 +
929 + [[image:image-20230817183249-3.png||height="320" width="417"]]
930 +
931 +* (((
932 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
933 +)))
934 +* (((
935 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
936 +)))
937 +* (((
938 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
939 +
940 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
941 +
942 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
943 +
944 +b) If the output duration is more than 30 seconds, better to use external power source. 
945 +)))
946 +
947 +
866 866  ==== 2.3.3.13  Working MOD ====
867 867  
868 868  
... ... @@ -883,7 +883,6 @@
883 883  * 8: MOD9
884 884  * 9: MOD10
885 885  
886 -
887 887  == 2.4 Payload Decoder file ==
888 888  
889 889  
... ... @@ -897,23 +897,22 @@
897 897  == 2.5 Frequency Plans ==
898 898  
899 899  
900 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
981 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
901 901  
902 902  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
903 903  
904 904  
905 -= 3. Configure SN50v3-LB =
986 += 3. Configure SN50v3-LB/LS =
906 906  
907 907  == 3.1 Configure Methods ==
908 908  
909 909  
910 -SN50v3-LB supports below configure method:
991 +SN50v3-LB/LS supports below configure method:
911 911  
912 912  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
913 913  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
914 914  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
915 915  
916 -
917 917  == 3.2 General Commands ==
918 918  
919 919  
... ... @@ -927,10 +927,10 @@
927 927  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
928 928  
929 929  
930 -== 3.3 Commands special design for SN50v3-LB ==
1010 +== 3.3 Commands special design for SN50v3-LB/LS ==
931 931  
932 932  
933 -These commands only valid for SN50v3-LB, as below:
1013 +These commands only valid for SN50v3-LB/LS, as below:
934 934  
935 935  
936 936  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -941,7 +941,7 @@
941 941  (% style="color:blue" %)**AT Command: AT+TDC**
942 942  
943 943  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
944 -|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
1024 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
945 945  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
946 946  30000
947 947  OK
... ... @@ -961,7 +961,6 @@
961 961  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
962 962  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
963 963  
964 -
965 965  === 3.3.2 Get Device Status ===
966 966  
967 967  
... ... @@ -977,10 +977,10 @@
977 977  
978 978  Feature, Set Interrupt mode for GPIO_EXIT.
979 979  
980 -(% style="color:blue" %)**AT Command: AT+INTMOD1AT+INTMOD2AT+INTMOD3**
1059 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
981 981  
982 982  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
983 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1062 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
984 984  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
985 985  0
986 986  OK
... ... @@ -1010,7 +1010,6 @@
1010 1010  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1011 1011  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1012 1012  
1013 -
1014 1014  === 3.3.4 Set Power Output Duration ===
1015 1015  
1016 1016  
... ... @@ -1025,7 +1025,7 @@
1025 1025  (% style="color:blue" %)**AT Command: AT+5VT**
1026 1026  
1027 1027  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1028 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1106 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1029 1029  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1030 1030  500(default)
1031 1031  OK
... ... @@ -1043,7 +1043,6 @@
1043 1043  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1044 1044  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1045 1045  
1046 -
1047 1047  === 3.3.5 Set Weighing parameters ===
1048 1048  
1049 1049  
... ... @@ -1052,9 +1052,9 @@
1052 1052  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1053 1053  
1054 1054  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1055 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1132 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1056 1056  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1057 -|(% style="width:154px" %)AT+WEIGAP=|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1134 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1058 1058  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1059 1059  
1060 1060  (% style="color:blue" %)**Downlink Command: 0x08**
... ... @@ -1069,7 +1069,6 @@
1069 1069  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1070 1070  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1071 1071  
1072 -
1073 1073  === 3.3.6 Set Digital pulse count value ===
1074 1074  
1075 1075  
... ... @@ -1080,7 +1080,7 @@
1080 1080  (% style="color:blue" %)**AT Command: AT+SETCNT**
1081 1081  
1082 1082  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1083 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1159 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1084 1084  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1085 1085  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1086 1086  
... ... @@ -1093,7 +1093,6 @@
1093 1093  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1094 1094  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1095 1095  
1096 -
1097 1097  === 3.3.7 Set Workmode ===
1098 1098  
1099 1099  
... ... @@ -1102,7 +1102,7 @@
1102 1102  (% style="color:blue" %)**AT Command: AT+MOD**
1103 1103  
1104 1104  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1105 -|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1180 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1106 1106  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1107 1107  OK
1108 1108  )))
... ... @@ -1119,11 +1119,101 @@
1119 1119  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1120 1120  
1121 1121  
1122 -= 4. Battery & Power Consumption =
1197 +=== 3.3.8 PWM setting ===
1123 1123  
1124 1124  
1125 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1200 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1126 1126  
1202 +(% style="color:blue" %)**AT Command: AT+PWMSET**
1203 +
1204 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1205 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1206 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1207 +0(default)
1208 +OK
1209 +)))
1210 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1211 +OK
1212 +
1213 +)))
1214 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1215 +
1216 +(% style="color:blue" %)**Downlink Command: 0x0C**
1217 +
1218 +Format: Command Code (0x0C) followed by 1 bytes.
1219 +
1220 +* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1221 +* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1222 +
1223 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1224 +
1225 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1226 +
1227 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1228 +|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 137px; background-color: #4F81BD;color:white" %)**Response**
1229 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1230 +0,0,0(default)
1231 +
1232 +OK
1233 +)))
1234 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1235 +OK
1236 +
1237 +)))
1238 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1239 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1240 +
1241 +
1242 +)))|(% style="width:137px" %)(((
1243 +OK
1244 +)))
1245 +
1246 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1247 +|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters**
1248 +|(% colspan="1" rowspan="3" style="width:155px" %)(((
1249 +AT+PWMOUT=a,b,c
1250 +
1251 +
1252 +)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1253 +Set PWM output time, output frequency and output duty cycle.
1254 +
1255 +(((
1256 +
1257 +)))
1258 +
1259 +(((
1260 +
1261 +)))
1262 +)))|(% style="width:242px" %)(((
1263 +a: Output time (unit: seconds)
1264 +
1265 +The value ranges from 0 to 65535.
1266 +
1267 +When a=65535, PWM will always output.
1268 +)))
1269 +|(% style="width:242px" %)(((
1270 +b: Output frequency (unit: HZ)
1271 +)))
1272 +|(% style="width:242px" %)(((
1273 +c: Output duty cycle (unit: %)
1274 +
1275 +The value ranges from 0 to 100.
1276 +)))
1277 +
1278 +(% style="color:blue" %)**Downlink Command: 0x0B01**
1279 +
1280 +Format: Command Code (0x0B01) followed by 6 bytes.
1281 +
1282 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1283 +
1284 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1285 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1286 +
1287 += 4. Battery & Power Cons =
1288 +
1289 +
1290 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1291 +
1127 1127  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1128 1128  
1129 1129  
... ... @@ -1131,7 +1131,7 @@
1131 1131  
1132 1132  
1133 1133  (% class="wikigeneratedid" %)
1134 -**User can change firmware SN50v3-LB to:**
1299 +**User can change firmware SN50v3-LB/LS to:**
1135 1135  
1136 1136  * Change Frequency band/ region.
1137 1137  * Update with new features.
... ... @@ -1144,26 +1144,24 @@
1144 1144  * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1145 1145  * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1146 1146  
1147 -
1148 1148  = 6. FAQ =
1149 1149  
1150 -== 6.1 Where can i find source code of SN50v3-LB? ==
1314 +== 6.1 Where can i find source code of SN50v3-LB/LS? ==
1151 1151  
1152 1152  
1153 1153  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1154 1154  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1155 1155  
1320 +== 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
1156 1156  
1157 -== 6.2 How to generate PWM Output in SN50v3-LB? ==
1158 1158  
1159 -
1160 1160  See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1161 1161  
1162 1162  
1163 -== 6.3 How to put several sensors to a SN50v3-LB? ==
1326 +== 6.3 How to put several sensors to a SN50v3-LB/LS? ==
1164 1164  
1165 1165  
1166 -When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1329 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1167 1167  
1168 1168  [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1169 1169  
... ... @@ -1173,7 +1173,7 @@
1173 1173  = 7. Order Info =
1174 1174  
1175 1175  
1176 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1339 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1177 1177  
1178 1178  (% style="color:red" %)**XX**(%%): The default frequency band
1179 1179  
... ... @@ -1193,13 +1193,12 @@
1193 1193  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1194 1194  * (% style="color:red" %)**NH**(%%): No Hole
1195 1195  
1196 -
1197 1197  = 8. ​Packing Info =
1198 1198  
1199 1199  
1200 1200  (% style="color:#037691" %)**Package Includes**:
1201 1201  
1202 -* SN50v3-LB LoRaWAN Generic Node
1364 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1203 1203  
1204 1204  (% style="color:#037691" %)**Dimension and weight**:
1205 1205  
... ... @@ -1208,7 +1208,6 @@
1208 1208  * Package Size / pcs : cm
1209 1209  * Weight / pcs : g
1210 1210  
1211 -
1212 1212  = 9. Support =
1213 1213  
1214 1214  
image-20230817183249-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +230.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0